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ABSTRACT 

 

 Microfluidic is a multidisciplinary field that deals with the flow of liquid inside micro-

meter size channels. In order to be considered as microfluidics, at least one dimension of the 

channel should be in the range of one micrometer or sub-millimeter. Microfluidic technology 

includes designing, manufacturing, formulating devices and processing the liquid. As numerous 

bio-science and engineering techniques have utilized microfluidics and highly integrated with 

this remarkable technology, the microfluidic platform technology has extended to several sub-

techs: micro-scale analysis, soft-lithography fabrication, polymer science and processing, on-

chip sensing and micro-scale fluid manipulation. Those sub-techs have been developed rapidly 

along with the booming microfluidics.  

The advance of those techniques has promoted microfluidic system diverse and 

widespread applications. Some examples that employ this technology include on-chip drug 

screening, micro-scale analysis, flexible electronics, biochemical assays.  Many engineering 

field, such as optics, electronics, chemicals and electromagnetics, have been integrated with the 

microfluidic system to form a completed system for sensing, analyzing or realizing some specific 

applications.  

Through the fusion of those technologies with microfluidics, many emerging 

technologies are well initiated, such as optofluidics and electrofluidics. Despite of rapid 

advancement of each parent technology field, those intersected technologies are still in their 

infancy and many technological elements and even some fundamental concepts are just now 

being developed. Thus, it provides great opportunity to explore more about those emerging 

technologies. Some particular areas that mainly interest researchers including cost deduction, 



www.manaraa.com

vi 

 

effective fabrication, highly integration, portability and applicability. Due to the wide and 

diversity nature of the microfluidic technology and numerous combinations from the integration 

with other fields, it is very difficult to choose a single aspect or particular subject to research. 

Hence, we would like to focus on the application orientated microfluidic techniques that 

integrated with other engineering areas, in particular optics and electronics.  Correspondingly, I 

will present four microfluidic platforms that integrated with optics, electronics for different 

application purpose.  

First of all, fiber-optics was integrated into a microfluidic device to detect muscular force 

generation of microscopic nematodes. The integrated opto-fluidic device is capable of measuring 

the muscular force of nematode worms normal to the translational movement direction with high 

sensitivity, high data reliability, and simple device structure. The ability to quantify the muscular 

forces of small nematode worms will provide a new approach for screening mutants at single 

animal resolution.  

Secondly, electronic grids were integrated into a microfluidic chip to realize on-chip 

tracking of nematode locomotion. The micro-electro-fluidic approach is capable of real-time 

lens-less and image-sensor-less monitoring of the locomotion of microscopic nematodes. The 

technology showed promise for overcoming the constraint of the limited field of view of 

conventional optical microscopy, with relatively low cost, good spatial resolution, and high 

portability.   

Thirdly, electromagnetic spit ring resonator (SRR) structure was adopted as microfluidic 

channel filled with liquid metal to fabricate a tunable microfluidic microwave electronics called 

meta-atom.  The presented meta-atom is capable of tuning its electromagnetic (EM) response 

characteristics over a broad frequency range via simple mechanical stretching. The meta-atom in 
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this study presents a simple but effective building block for realizing mechanically tunable 

metamaterials. 

Finally, based on the meta-atom we previously developed, an array of electromagnetic 

SRR shaped microfluidic channels filled with liquid metal to form a flexible metamaterial-based 

microwave electronic “skin” or meta-skin. When stretched, the meta-skin performs as a tunable 

frequency selective surface with a wide resonance frequency tuning range. When wrapped 

around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to 

significantly suppress scattering from the surface of the dielectric material along different 

directions. 

The microfluidic platform will find great applications when it integrates with other 

technologies. The development of such integration will greatly intersect different research areas 

and benefit all of the intersected technologies and fields, thus broadening the future applications.  
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CHAPTER 1  

GENERAL INTRODUCTION 

 

1.1 Introduction 

Microfluidics is a generalized technology rooted from microelectronics, intersecting 

engineering, physics, biochemistry, chemistry with practical application in many research 

areas.  As the name states, the technology initially is design to process low volumes of fluidic 

to fulfill certain applications. To be considered as microfluidics, at least one dimension of the 

channel should be in the range of one micrometer or sub-millimeter [1]. Several core sub-

techniques have been developed rapidly along with this emerging micro-fluidic field, such as 

soft-lithography fabrication, polymer science and processing, on-chip sensing and micro-

scale fluid manipulation [2]. 

Soft lithography refers to a fabrication technique or strategy based on printing, 

molding and embossing with elastomeric materials. It has several advantages over 

conventional photo lithography, including lower cost, bio-compatible, flexible substrate, 

experimentally convenient and thus is well suited in microfluidics, biological application, 

flexible and tunable electronics, applications involve curved structures [3, 4]. The advance of 

soft lithography has transformed microelectronics.  

Thanks to soft lithography, many polymers, such as Polydimethylsiloxane (PDMS), 

Poly(methyl methacrylate) (PMMA) and Polybutyrate (PBAT or Ecoflex), have replaced 

traditional semiconductor substrate (silicon, glass) in many microfluidic platforms [1]. There 

are two major factors to consider when choosing a material for a microfluidic platform: 

degree of integration and application requirement.  Several material characteristics that may 
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be important when choosing a material such as: electrical property, bio compatibility, optical 

transparency and flexibility. PDMS is the most common microfluidic substrate for academic 

experimental use due to its reasonable cost, ease of implementation and mature processing 

protocol. Recently, another elastomer Ecoflex has drawn great attention to researchers due to 

its super elasticity and flexibility. It is a great alternative elastomer where the applications 

require higher flexibility [2].  

On-chip sensing is a technique that integrate on-chip sensors with microfluidic 

platforms for various applications [5]. Many sensing techniques have been successfully 

integrated with microfluidics, including optical detection [6], electrochemical detection [7], 

acoustic detection [8], mass spectrometry and etc. [9]. Among them, optical and 

electrochemical methods are most commonly used. Optical methods have several advantages 

such as great sensitivity, contactless with analyte and transplantable for different objects. 

While electrochemical detection is great for miniaturization, portability and low-cost 

applications. Conductivity, amperometry and potentiometry are the most commonly used 

characteristics in electrochemical detection [10].  

Micro-scale fluid manipulation is another important branch of microfluidic 

technology. Pumping, valves, and mixing are three essential elements of fluid manipulation. 

Integration of micropumps into the system can reduce the dead volumes from the interface 

with external pumps [11,12]. Valves are the core components of controlling and directing the 

movement of the fluid [12]. On-chip mixers are needed in favor of thorough and rapid 

mixing of different fluid [13,14].   

The microfluidics has been developing substantially with applications intersecting 

across multiple fields and disciplines. The multidisciplinary nature of microfluidics demands 
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continued coordination between different engineering fields, in order to achieve its full 

potential. Several emerging technology areas have been well initiated and the most popular 

two are optofluidics and electrofluidics [10, 15]. As their name imply, each technology is 

created by the fusion of two technologies.  

Optofluidics is combing the advantages of both optics and microfluidics to enable the 

simultaneous delivery of light and fluidics with microscopic precision. Two research 

directions both show great promising to solidify into the new field optofulidics. One is 

incorporating optical elements into microfluidic system, in which light manipulates fluid, to 

achieve fast and accurate sensing or manipulating of fluidic. The other direction is to use 

microfluidic elements as fundamental part of photonic device, where fluid manipulates light. 

Both of these two concepts outline a wide application of optofludics include smart display, 

biosensors and sustainable energy [10, 16]. 

Electrofludics is a new research field with a focus on the interaction in microfluidic 

and electronics. Similar to optofluidics, there are two research directions as well for 

electrofludics and both are shown great potential to advance the emerging field 

electrofludics. By integrating electronic device into microfluidic system, it opens up wide 

opportunity for on-chip sensing, actuation and fluidic manipulation. On the other hand, 

thanks to the introduction of high conductivity liquid metals with low toxicity, introducing 

microfluidic technique into electronics have been adopted and further developed to various 

devices such as wearable electronics, liquid transistors, stretchable RF antenna and flexible 

metamaterials [15, 17].  

Despite the great progress that has been made in their parent fields, those intersected 

technologies are still in their infancy and many technological elements and even some 
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fundamental concepts are just now being developed. Thus, it provides great opportunity for 

us to explore more about those emerging technologies.  

 

1.2 Literature Review of Current Technologies 

 

Since the two concepts are introduced, they have gained considerable attention 

because of their great potential in many applications. Opportunity along with the problems 

are raised by many researchers. This part details several state-of-art concepts, techniques and 

applications of optofluidics and electrofluidics. Those work will be described in 4 sub 

categories as we discussed above: 1.Optofluidics with optics added to microfluidic systems, 

2. Optofludics with fluidics added to microoptic systems, 3. Elecrofludics with electronics 

added to microfluidic systems, and 4. Electrofluidics with fluidics added to electronic 

systems. Of course, the present work may not only combine just two technologies, they may 

be mingled with each other: electro-optofluidics or integrated with other technologies, such 

as mechanical, thermal, acoustics, etc. 

1.2.1 Optofluidics with optics added to microfluidic systems 

With optical elements integrated into microfluidic, mostly in sensing and actuating 

parts, many novel compact and dense integrated optofluidic devices were developed. The 

fluid and particle manipulations can be improved by several optical techniques: optical 

tweezers [18-20], optically induced microfluidic field [21,22], near-field evanescent field 

[23,24]. Fig. 1.1 shows a novel fluidic manipulation method with photothermal effect. By 

illuminating photothermal nanoparticles (PNPs) inside the fluid near the liquid-air interface, 

heat is generated and evaporates the surrounding liquid. The vapor in the colder air 

condenses and droplets form very close to or even in contact with the interface. The droplet 
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then coalesce with each other and merge with the original liquid body due to the surface 

tension gradient and extend its contact line [22].   

 

Fig. 1.1 (a) The principle of optically controlled advance of the liquid-air interface (b) The 

optically guided fluidic into left channel after two sharp turns (Reprinted by permission from 

Macmillan Publishers Ltd: [Nature Material] (ref 22). Copyright (2006)).  

While in the sensing system of microfluidic platform, couple and integrate optical 

components into microfluidic devices are great to achieve sensitivity and scalability to 

smaller dimensions compare to other detection methods.  The typical optical detection 

methods used in the microfluidic system are monitoring light properties including 

fluorescence [25,28], absorbance [26,28] and transmittance [27]. These methods usually 

involve techniques including fiber optics [27], evanescent waves [28] and optical waveguide 

[29].   A biomimetic mass-flow transducer producing responses in the form of optical pulse 

train was developed by Lee and her colleagues and shown in Fig. 1.2. By integrating one 

optical fiber cantilever with multiple polymer optical waveguides on a microfluidic platform, 

a pulse train can be generated by the mass-flow deflecting the optical fiber cantilever. The 

flow rate can be obtained by decode the pulse trains signal [27].  
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Fig. 1.2 (a) A schematic diagram of the optofluidic mass-flow transducer (b) When the mass-

flow comes in, the fiber cantilever deflects and scan the waveguide array, generating pulse 

train depending on the scan speed and mass-flow strength (Reproduced from ref [27]. 

Copyright [2006] with permission of The Royal Society of Chemistry). 

1.2.2 Optofluidics with fluidics added to microphotonic system 

Microfluidic techniques are capable of providing tunability and flexibility to many 

photontic devices such as liquid waveguide [30], liquid lenses [31,32] and optofluidic lasers 

[33,34]. Wolfe et al. [30] reported a novel optical waveguide with both the light-guiding and 

cladding structures are liquid flowing in microchannels fabricated in PDMS. The major 

advantage of this device is the level of reconfigurability that solid-state waveguide can hardly 

obtain. The great reconfigurability can be achieved by several methods: easily adding 

dopants to control optical properties; switching between single-mode and multi-mode by 

modulating the size of the liquid core; switching the optical path by controlling the liquid 

streams. Fig. 1.3 shows the design and images of the liq/liq waveguide.  

 

Fig. 1.3 (a) Diagram of the design of a microfluidic channel used in these experiments (b) 

Optical micrograph of the waveguide (c) Fluorescence micrograph of the same region of the 

channel as in (b) (from ref [30]. Copyright [2004] National Academy of Sciences). 
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Fig. 1.4 shows an adaptive liquid microlens developed by Dong et al. The basic 

design consists of a stimuli-responsive hydrogel ring placed within a microfluidic system. 

When exposed to an appropriate stimulus, the hydrogel ring responds by expanding or 

shrinking, owing to the absorption or release water, this leads to a curvature change of the 

water droplet located in the middle of the ring. By selecting different hydrogels, the lens can 

respond to different stimulus which could be PH, temperature, light and so on [32].  

 

Fig. 1.4 (a) Diagram of the design and mechanism of the smart microlens using a pinned 

liquid-liquid interface (b) The shape of the liquid microlens varies with local environmental 

temperature (Reprinted by permission from Macmillan Publishers Ltd: [Nature] (ref 32). 

Copyright (2006)). 

1.2.3 Electrofludics with electronics added to a microfluidic system 

Electronics have been integrated into microfluidic system for decades. Similar to 

adding optics into microfluidic system, manipulating fluid and sensing are the two main 

constraints to further reduce the size of the microfluidic device. The most common electronic 

technique in manipulating fluidic includes electrochemical methods [35], electrostatic 
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actuation [36], electrowetting [37] and electrophoresis [38].  Pollack et al. [37] developed an 

electrowetting-based actuator of liquid droplets for microfluidic applications. Microactuation 

is achieved by direct electrical control of surface tension (wetting property) via two opposing 

planar electrodes. Fig 1.5 shows the scheme and the video frames of the working device. 

 

Fig. 1.5 (a) Schematic cross-section view of the electrowetting microactuator (b) Video 

frames of a moving droplet actuated by applying potential on the electrodes underneath the 

droplet (Reprinted with permission from ref [37]. Copyright [2000], AIP Publishing LLC.). 

With the miniaturized manipulation parts placed on the microfluidic device, people 

developed several on-chip detectors for read-out and better integration. Amperometric 

detector [39,40], voltammetric detector [41], impedance detector [42] and conductivity 

detector [38] are the most popular ones. Fig. 1.6 shows a pioneer work of integrating 

conductivity detector into electrophoresis microfluidic system. It was developed in 2002 by 

Gallway et al with ease of integration and relatively simple and quick fabrication technique 

[38]. The conductivity detector consisted of a pair of platinum wires situated within the 

fluidic channel. Once the analyte enters the detection region, the pair of electrodes will 

contact with the analyte and read out the conductivity information.    
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Fig. 1.6 (a) Schematic view of PMMA-based microchip with integrated conductivity detector 

(b) SEM near the waste reservoir (c) Optical micrograph of PMMA microfluidic chip that 

was assembled with a coverplate and electrodes and then cut down the center of the fluidic 

channel (d) Optical micrograph of the conductivity detector integrated to the PMMA 

microfluidic device (Reprinted with permission from ref [38]. Copyright (2002) American 

Chemical Society). 

1.2.4 Electrofluidics with fluidic added to electronic system 

Conductive material is essential in electronic system. In traditional microfluidics, 

ionic solutions are the most common liquid conductors that we have dealt with. However, 

poor electrical property may be caused by its relative low conductivity. Mercury is a well-

known liquid metal with high conductivity. However, due to its high toxicity, it was not 

considered as a suitable material. Recently, the gallium-based alloys (Galinstan and EGaIn) 

stand out due to their low toxicity, non-reactive, liquid state in quite a broad temperature. 

Many liquid-state electronic devices have been developed using microfluidic platform 

technology including: transistors [43,44], capacitor [45], heterojunction sensors [46], 

wireless strain sensors [47], interconnector [48], switches [49] and radio-frequency 

electronics [50-52]. With the booming interest of microfluidic based liquid metal electronics, 
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conventional fabrication techniques with serial injection of liquid lacks of reliability and high 

throughput. Many advanced fabrication processes have been developed to take the especial 

care of viscous liquid metal such as direct writing with roller-ball pen [53], printing [54,55] 

and tape transfer [56].  

Fig. 1.7 shows a schematic illustration and optical micrograph of a stretchable 

microfluidic radiofrequency antenna. The antenna consisted of liquid metal (EGaIn) enclosed 

in elastomeric microfluidic channels. A structurally simple half-wave antenna design was 

adopted to demonstrate the concept. The resonance frequency of the antenna was able to be 

reconfigured from 1.53 GHz to 0.738 GHz as the antenna was stretched [52].  

 

Fig. 1.7 Schematic illustrations and optical micrograph of the stretchable antenna (Reprinted 

with permission from ref [52]. Copyright (2010) John Wiley & Sons, Inc).  

A novel fabrication technique with direct writing of liquid metal using a roller-ball 

pen was developed by Zhen et al. [53]. This paper demonstrates the feasibility of directly and 
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instantly writing out various conductive structures on flexible polymer substrate with the 

room temperature liquid metal.  

 

Fig. 1.8 (a) Optical image of a roller-ball pen loaded with liquid metal ink (b) and (c) Optical 

image of the side and top views of the pen tip (d) The conductive track written by the roller-

ball pen (Reused from ref [53], 2013, used in accordance with the Creative Commons 

Attribution (CC BY) license).  

With inclusion of liquid metal as active components has opened up new ways to 

realize flexible electronics. The development of the fabrication process dealt with liquid 

metal will dramatically accelerate the progress of integrating fluid into electronics.  

The following table summarizes the state of the art devices and applications of micro-electro-

opto-fluidic systems. 

Table 1. State of The Art Devices and Applications  

Device/Application Category 
Integration technique and 

purpose 

Microfluidic sorting in an 

optical lattice [20] 

Optofluidics with optics 

added to a microfluidic 

system 

On-chip separating/ sorting 

nanoparticles by refraction of 

index using optical tweezers 
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Table 1 continued   

Optofluidic control using 

photothermal 

nanoparticles[22] 

Optofluidics with optics 

added to a microfluidic 

system 

On-chip controlling and guiding 

the fluid flow using photothermal 

effect 

Optical manipulation of 

nanoparticles and 

biomolecules [23] 

Optofluidics with optics 

added to a microfluidic 

system 

On-chip trapping and transporting 

of nanoparticles using near-field 

evanescent field 

Temperature measurement 

using a temperature 

dependent dye [25] 

Optofluidics with optics 

added to a microfluidic 

system 

On-chip temperature 

measurement using a temperature 

dependent fluorescence dye 

Optofluidic mass-flow 

transducer [27] 

Optofluidics with optics 

added to a microfluidic 

system 

On-chip mass-flow sensor using 

waveguide array to scan the 

deflection of fiber cantilever by 

measuring the transmittance 

Multifunctional nanowire 

evanescent wave optical 

sensors [28] 

Optofluidics with optics 

added to a microfluidic 

system 

On-chip detecting molecules in 

solution with nanowire using 

optical absorbance  

Liquid-core/liquid-cladding 

optical waveguides [30] 

Optofluidics with 

fluidics added to 

microphotonic system 

Tunable liquid optical waveguide 

with liquid stream as the core and 

cladding layer 

Adaptive liquid micro-

lenses [32] 

Optofluidics with 

fluidics added to 

microphotonic system 

Tunable micro liquid lenses with 

liquid as the lenses medium 

activated by stimuli-responsive 

hydrogel 

Single mode optofluidic 

distributed feedback dye 

laser [33] 

Optofluidics with 

fluidics added to 

microphotonic system 

Optofluidic light source that 

employ fluids as the gain medium 

Electrochemical principles 

for active control of liquids 

on submillimeter scales [35] 

Electrofludics with 

electronics added to a 

microfluidic system 

On-chip pumping and positioning 

of liquids using electrochemical 

methods 
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Table 1 continued   

Electrowetting-based 

actuation of liquid droplets 

[37] 

Electrofludics with 

electronics added to a 

microfluidic system 

On-chip actuation and 

transportation of liquid droplets 

using electrowetting methods 

Contact conductivity 

detection for analysis of 

mono- and polyanionic 

molecules [38] 

Electrofludics with 

electronics added to a 

microfluidic system 

On-chip separation of molecules 

using electrophoresis and on-chip 

detection using on-chip 

conductivity detector 

Duel-electrode 

amperometric detection for 

electrophoresis microchip 

[39] 

Electrofludics with 

electronics added to a 

microfluidic system 

On-chip separation of molecules 

using electrophoresis and on-chip 

detection using on-chip 

amperometric detector 

Cell-impedance sensing for 

monitoring single cancer 

cell migration [42] 

Electrofludics with 

electronics added to a 

microfluidic system 

Monitoring single cancer cell 

using integrated electrical cell-

impedance sensing 

Tunable organic 

microfluidic transistors 

[43] 

Electrofluidics with 

fluidic added to 

electronic system 

Tunable organic transistor that 

employ conducting fluidic as 

source and drain electordes 

Highly deformable liquid-

state heterojunction sensors 

[46] 

Electrofluidics with 

fluidic added to 

electronic system 

Fabrication of liquid-liquid 

‘heterojunction’ sensors by 

choosing different sensing liquid 

Stretchable microfluidic 

radiofrequency antennas 

[47] 

Electrofluidics with 

fluidic added to 

electronic system 

Stretchable and tunable 

microfluidic antenna that employ 

liquid metal as active material 

embedded in a microfluidic 

channel 
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1.3. Problems to be Solved 

1.3.1 Drug screening based on nematodes using micro-electro-opto-fluidic systems 

Parasitic nematodes remain a major problem in many area of the world because they 

cause disease in plants, animals and human. Control of these infections rely on regular 

chemotherapy. However, resistance developed to certain drugs can reduce the strength and 

effect of that drug thus has become the major threat to the production and wellness of 

animals and plants. Screening drug resistance of parasites is necessary for limiting spread of 

parasites and useful for discovery new drugs. The conventional method for detection of drug 

resistance is mesh system. The worms resistant to a certain anthelmintic are able to move 

through the mesh, whereas the sensitive worms are restricted. By counting the percentage of 

worms that were inhibited by the anthelmintic drug, one can get the information of the drug 

resistance. The disadvantage of the mesh system includes low resolution and low throughput. 

Currently, a lack of information on physiological changes of parasitic nematodes that 

occurred with drug resistance has prevented the development of successful molecular biology 

assays. A deep screening for drug sensitivity is urgently desired for monitoring the 

characteristic changes in the phenotypes of locomotion, muscular force and 

electrophysiological signals. The advantages of micro-electro-opto-fluidic system provide the 

potential of addressing the drawbacks of present mesh system and help to correlate any 

change in phenotype associated with resistance [57, 58]. My work focuses on developing 

deep drug screening platforms for monitoring two phenotype changes in locomotion and 

muscular force in a cost effective, reliable and simple way with the advanced micro-electro-

opto-fluidic system. 
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1.3.2 Tunable and flexible microwave metamaterials using micro-electro-fluidic systems 

Flexible electronics have gained considerable attention because of their potential 

application in artificial skins, flexible displays, wearable sensors, sustainable energy, etc. On 

the other hand, EM metamaterials have been intensively studied because they possess 

intriguing properties that can be hardly found in natural materials, such as negative 

permittivity, negative refractive index and index close to zero. Those unique properties allow 

metamaterials to be employed in many emerging applications such as sub-wavelength 

resolution imaging, filtering, and cloaking. And if the response characteristics are 

dynamically tunable, these devices will become more useful when adapting to different 

applications [59, 60]. Thus designing and fabricating devices that combine the advantages of 

flexible electronics and tunable metamaterials are important and will find many applications 

in frequency tuning, shielding and cloaking on curved surfaces. Liquid metal is a perfect 

bridge to connect the electronics with microfluidic platform technology. My work focuses on 

designing and fabricating flexible tunable microwave metamaterials with simple tuning 

mechanism using micro-electro-fluidic system. 

 

1.4 Challenges and Approaches 

So far, we have discussed the increasing interests and needs for integration of 

microfluidic technology with optics and electronics and two main problems that we focused 

on. Many challenges remain in this area. They require more efforts to dig deeper to solve 

them and provide great opportunities for researchers as well. The main challenges are cost 

deduction, integration improvement, easier fabrication, increase applicability, and pursuant 

of flexible and tunable electronics. All the challenges are impossible to be solved with one 
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simple technique, and usually, some features are sacrificed to improve others for application 

purpose. Therefore it is difficult to discuss the approaches solely without considering the 

application requirements. For all four application-orientated microfluidic platforms that will 

be presented later, I will discuss the challenges and approaches separately from the 

application point of view for each of them.  

1) The current technology for measuring muscular force uses complicated strain 

gauge structure, or can’t detect dynamic force of a worm in motion, or requires a high 

resolution microscope with automated stage. We developed a microfluidic device 

integrated with fiber optics is capable of measuring muscular force with high sensitivity. 

The simple and easy design of the structure is the key approach to achieve the ease of 

fabrication, high integration and improved applicability. Chapter 2 will detail the design, 

fabrication and results. 

2) The optical microscopic imaging technique is essential for observing and 

extracting movement and locomotion information from live nematodes. Almost all of the 

existing technologies essentially utilize optical effects, such as shadow and interference 

patterns due to the presence of microorganisms, and thus, inevitably require a 

sophisticated imaging sensor chip, along with a light source for observation. We 

developed a micro-electro-fluidic device with low cost, simple architecture and high 

portability. The device consists of two identical linear array of thin-film microelectrodes 

that doesn’t require any lens and image-sensors. Chapter 3 will detail the theory, 

fabrication, results and discussion. 

3) While existing tunable metamaterial technologies have led to significant 

improvement toward broadening dynamic tuning ranges, there is still much room for 
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improvement such as simplifying tuning mechanism, extending tuning range and making 

device flexible enough to comply with surface irregularities on the underlying substrate. 

Thanks to liquid metal and microfluidic technique, we developed a novel stretchable 

meta-atom with liquid metal embedded in microfluidic SRR shaped channel. The meta-

atom is capable of tuning its EM response over a broad frequency range via simple 

mechanical stretching.  Chapter 4 will detail the theory, design, fabrication, results and 

discussion. 

4) Although we successfully developed a stretchable meta-atom, it is impossible 

to use the meta-atom as filter or cloaking due to its small size. With the experience of 

developing stretchable meta-atom, we further improved our fabrication techniques to 

realize large-scale fabrication. Thus a wearable meta-skin with tunable frequency 

selective and cloaking effects was developed. The large-scale meta-skin consists of an 

array of meta-atoms fabricated with liquid metal injected within microfluidic channels. 

Chapter 5 will detail the design, fabrication, results and discussion. 

 

1.5 Thesis Organizations 

The following chapters are an accumulation of four published journal papers of which 

I am the primary author. 

Chapter 2 describes development of an integrated fiber-optic microfluidic device for 

measuring muscular force of small nematode worms with high sensitivity, high data 

reliability and simple device structure. It is a great example of efficiently integrating optical 

elements into microfluidic platform with a great demonstration of application. The paper “An 
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integrated fiber-optic microfluidic device for detection of muscular force generation of 

microscopic nematodes” is published in Lab on a Chip, 12, 2012.  

Chapter 3 illustrates the development of a lens-less and image-sensor-less micro-

electro-fluidic approach for real-time monitoring of the locomotion of microscopic 

nematodes. It is a great example of integrating electronics into microfluidic platform. The 

integration shows promise for overcoming the constraint of the limited field of view of 

conventional method, with low cost, good resolution and high portability. The paper “Micro-

electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip 

tracking of nematode locomotion” is published in Lab on a Chip, 13, 2013. 

Chapter 4 presents a new type of tunable meta-atom in the x-band frequency range 

towards reconfigurable metamaterials. The meta-atom uses a liquid metal based split-ring 

resonator as its core constituent embedded in a highly flexible elastomer with simple tuning 

mechanism and high flexibility. It is a great example of adding fluidic to electronic device. 

The paper “Tunable meta-atom using liquid metal embedded in stretchable polymer” is 

published in Journal of Applied Physics, 118, 2015. 

Chapter 5 reports a flexible metamaterial-based “skin” or meta-skin with tunable 

frequency selective and cloaking effects in microwave frequency regime. The meta-skin is 

composed of an array of meta-atoms. It is a great example showing the advantage of 

microelectronics made with fluidic using microfluidic platform and technology. The paper 

“From Flexible Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with 

Tunable Frequency Selective and Cloaking Effects” is published in Scientific Report, 6, 

2016.  

Finally, the conclusion and future aspects will be summarized in Chapter 6. 
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CHAPTER 2 

AN INTEGRATED FIBER-OPTIC MICROFLUIDIC DEVICE FOR DETECTION OF 

MUSCULAR FORCE GENERATION OF MICROSCOPIC NEMATODES 

 

A paper published in Lab on a Chip 

 

Peng Liu, Depeng Mao, Richard J. Martin and Liang Dong 

 

2.1 Abstract 

This paper reports development of an integrated fiber-optic microfluidic device for 

measuring muscular force of small nematode worms with high sensitivity, high data 

reliability, and simple device structure. A moving nematode worm squeezed through multiple 

detection points (DPs) created between a thinned single mode fiber (SMF) cantilever and a 

sine-wave channel with open troughs. The SMF cantilever was deflected by the normal force 

imposed by the worm, reducing optical coupling from the SMF to a receiving multimode 

fiber (MMF). Thus, multiple force data could be obtained for the worm–SMF contacts to 

verify with each other, improving data reliability. A noise equivalent displacement of the 

SMF cantilever was 0.28 μm and a noise equivalent force of the device was 143 nN. We 

demonstrated the workability of the device to detect muscular normal forces of the parasitic 

nematodes Oesophagotomum dentatum L3 larvae on the SMF cantilever. Also, we used this 

technique to measure force responses of levamisole-sensitive (SENS) and resistant (LERV) 

O. dentatum isolates in response to different doses of the anthelmintic drug, levamisole. The 

results showed that both of the isolates generated a larger muscular normal force when 

exposed to a higher concentration of levamisole. We also noticed muscular force phenotype 

differences between the SENS and LERV worms: the SENS muscles were more sensitive to 
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levamisole than the LERV muscles. The ability to quantify the muscular forces of small 

nematode worms will provide a new approach for screening mutants at single animal 

resolution. Also, the ability to resolve small differences in muscular forces in different 

environmental conditions will facilitate phenotyping different isolates of nematodes. Thus, 

the present technology can potentially benefit and advance the current whole animal assays. 

2.2 Introduction 

Movement of multicellular organisms, such as the nematode Caenorhabditis elegans, 

exhibits a sinusoidal pattern induced by alternating dorsal and ventral muscle contraction 

when swimming/crawling across surfaces.1,2 The waves of the muscle contraction produce 

local bending in the cuticle and generate lateral thrust or planar force.3 Researchers have 

showed that the nematodes maintain their motion generation mechanism by producing lateral 

thrust in either natural or artificially structured surrounding environments.4 There has been 

considerable attention devoted to organismal biomechanics of important nematode species.5−9 

Investigation of correlations between genes, neurons, sensory organs, muscular arms, and 

motion patterns of these nematodes is critical to understand: a) the coupling between signals 

in the neuromuscular system, b) the muscle dynamics, and c) the emergent mechanical 

behaviour of the whole animal.10,11 Applications of organismal biomechanics include 

ameliorating human health problems (e.g., prosthesis design and movement restoration),12 

and developing new therapy for neuromuscular diseases caused by mechanosensory 

degradation and defects.13 Also, through genetic modification, mutants of C. elegans can be 

created, which affect the forces of motion and thus the phenotypic locomotive behavior of 

mutants.14,15 Thus, screening these mutants at the single animal resolution needs a miniature 

force sensor suitable for detecting the muscular force of these mutants. Furthermore, as we 
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will see later, it is possible to screen drug resistance of parasitic nematodes by directly 

examining muscular forces of parasitic nematode species under different chemical or drug 

environmental conditions. This is because drug resistance of parasitic nematodes may be 

associated with changes in signalling-muscle-contraction pathways.16,17  

Many tools have been developed to analyze cellular and molecular mechanics in the 

past two decades,18 including optical tweezers,19−21 atomic force microscopy,22−24 magnetic 

twisting cytometry,25,26 micropipette aspiration,27,28 and micro-electro-mechanical systems 

(MEMS) sensors and actuators.29,30 These tools have yielded important insights into 

fundamental biology research.31,32 However, they are not suitable for use in the study of 

multicellular organismal biomechanics of small nematode worms. The advent of MEMS, 

microfluidics, and automated imaging techniques have led to a new class of miniature 

devices and systems to study neurophysiology and behaviour of nematode species via 

flexible manipulation, imaging and screening of the nematodes.33−46 However, due to a lack 

of new muscular force sensing tools, the study of the multicellular organismal mechanics 

currently lags behind that of the cellular and molecular mechanics. Pruitt and co-workers 

pioneered the use of a piezoresistive cantilever-based indentation system for studying the 

mechanical properties of C. elegans.3 This system offered advantages such as a wide range of 

force and displacements matched to different biological materials, and an ability to target a 

desired dynamic range and a high force resolution of 12 nN; but it was unable to detect the 

dynamic force of a worm in motion. To detect the dynamic force of moving nematodes, the 

researchers reported another remarkable nematode force measurement microsystem using an 

integrated strain gauge force sensor, with a force resolution of the device was 260 nN.47 The 

device was constructed from multiple layers of SU-8 and metal on quartz substrates, capable 
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of measuring tactile sensitivity and interaction forces exerted during locomotion, but the 

device structure was relatively complicated. Subsequently, Ghanbari and co-workers 

developed a simple microfluidic device for measuring force generated by moving nematodes 

in real-time.4,48 The device used an array of vertical polymeric pillars fabricated in a channel. 

The force applied by a moving nematode to each pillar was detected via a vision-based 

approach. This vision-based force sensing system was capable of performing robust force 

measurements with a 330 nN resolution.4 This technique, however, required a high-resolution 

microscope with an automated stage, a video camera, and a special algorithm to track worm 

movement and resolve mechanical deflections of the pillars induced by the nematode-pillar 

contacts. Also, the deflections of the short pillars were limited by a relatively low 

manufacturable aspect ratio of the pillars, causing low sensitivity of the device. 

2.3 Methods and Experimental Section 

2.3.1 Device principle and design 

Fig. 2.1 presents our fiber-optic microfluidic device for detecting muscular forces of 

small nematode worms. A worm enters a sine-wave channel at a worm inlet without applying 

any attractants. To minimize body contact between the worm and the sidewalls of the 

channel, the amplitude and wavelength of the sine-wave channel are designed to be similar to 

those of the worms under test. Also, the channel is wide enough to neglect constraints from 

the sidewalls on the worm’s natural movement. The lower part of this sine-wave channel is 

open, where a silica SMF cantilever is suspended horizontally adjacent to the channel. The 

SMF cantilever is anchored at one end and free to bend at the other end, accepting an input 

light at the fixed end (from an external light source). A receiving MMF (unmoveable) is 

embedded in the channel and aligned with the SMF along central optical axis. As the worm 

contacts the SMF cantilever and squeezes through the troughs of the sine-wave channel, the 
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SMF cantilever is forced to deflect horizontally away from the channel by the normal force, 

Fn, of the worm (see inset in Fig. 2.1). This reduces light coupling from the SMF to the MMF 

and thus the transmitted optical power received by an external photodetector (connecting to 

the MMF). By this means, Fn of the worm exerted on the SMF cantilever was detected. The 

horizontal placement of the SMF has the advantage of a high aspect ratio of the SMF, and 

leads to a more sensitive detection of the responses of the SMF to Fn. As the worm swims 

through the whole sine-wave channel, the multiple worm-SFM contacts at the different 

detection points (DPs) generates multiple force data that can be cross-checked and/or 

averaged, thus improving the reliability of the force data.  

 

Fig. 2.1 Optical image of a fabricated fiber-optic microfluidic device for detecting force of a 

small nematode worm. The white dashed line represents a wave form of a sine-wave channel. 

The blue circles highlight multiple detection points (DPs) along a thinned single mode fiber 

(SMF) cantilever. Inset shows a worm (SENS O. dentatum larvae) pushing the cantilever 

away from the original while squeezing through one of five DPs formed between the SMF 

cantilever and the lowest edge of the channel’s upper sidewall. ∆x is deflection at the free 

end of the SMF cantilever. Fn and Ft represent the normal force and tangential force, 

respectively, of a worm applied to the SMF cantilever. 

To obtain high mechanical sensitivity while allowing for good light propagation, the 

SMF cantilever was thinned down to the optical mode field diameter, df, of the fiber. The 

SMF (here, SMF-28, Corning) was etched to 10 µm in diameter to match the df  (9.2 µm) at a 
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light wavelength of 1310 nm and the df  (10.4 µm) at 1550 nm of the original fiber. The 

diameter of the MMF was 65 µm. The sine-wave channel was designed to have an amplitude 

of 160 µm and a wavelength of 450 µm to match the traveling wave patterns of the SENS 

and LERV larvae used in this work. The gap between the SMF and the lowest edge of the 

channel’s upper sidewall, D, was 20 µm (see the denotation of D in Fig. 2.1; the influence of 

D on worm force generation will be discussed later). The fiber-to-fiber end distance was 50 

µm. To ensure that the SMF cantilever deflection occurs only in planar direction, the central 

optical axis of the SMF was set to be 12.5 µm, or half the diameter (~25 µm) of the SENS 

and LERV worms used, above the bottom surface of the channel. The SMF cantilever was 2 

mm long spanning over the 5 DPs. As we will see later, the length of the cantilever is limited 

by its elastic downward deflection in the vertical direction. 

To simulate the deflection responses of the SMF cantilever to Fn applied at different 

DPs of the cantilever, finite-element analysis (FEA) was performed using the ANSYS 

software package.49 As shown in Fig. 2.2a, the deflection at the free end of the cantilever ∆x 

was proportional to magnitude of Fn, following a linear spring force-deflection model given 

by Fn = k∆x, where k is the stiffness of the cantilever.50 As seen later (Figs. 2.6d and 2.7e), 

the SENS O. dentatum generates the same Fn while deflecting the SMF cantilever at different 

DPs. We therefore applied Fn = 9.16 µN at the five DPs in this simulation (Fig. 2.2b). As 

expected, a larger ∆x was obtained as Fn was applied closer to the free end of the cantilever. 

Specifically, the simulated ∆x was 18.6, 12.6, 6.28, 2.07, and 0.074 µm at the five DPs from 

left to right along the cantilever (Fig. 2.2b).  
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Fig. 2.2 (a) Finite element analysis (FEA) simulated and nanoindentation determined 

deflection, ∆x, at the end of a SMF silica cantilever, as a function of normal force applied at 

five DPs along the SMF cantilever. The SMF cantilever used in the FEA simulation was 10 

µm diameter and 2 mm long. The SMF cantilever used in the nanoindentation experiment 

was 10.07 ± 0.11 µm in diameter and 2 mm in length. (b) Deflection profile of the SMF 

cantilever under a given normal force of 9.16 µN applied at five DPs. 

To confirm the accuracy of the model used in the Fn–Δx simulation, we used a 

nanoindenter (NANO Indenter XP, MTS Systems) to measure the deflections of the 

fabricated SMF cantilevers (see the fabrication processes in Fig. 2.5) under various applied 

forces (Fig. 2.2a). The SMF cantilevers under test were 10.07 ± 0.11 µm in diameter and 2 

mm in length. The force and displacement resolution of the nanoindenter was 50 nN and 0.01 

nm, respectively. The controlled forces Fn were applied to each DP (normal to the SMF 

cantilever). Each measurement was the mean ± standard deviation obtained from 9 data 

points. As shown in Fig. 2.2a, the measured displacement at the free end of the cantilever ∆x 

had a good agreement with the simulated result, demonstrating the accuracy of the model 
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used in the FEA simulation. Specifically, when Fn = 9.16 µN, the displacement at the free 

end of the cantilever ∆x was found to be 18.66 ± 0.21, 12.54 ± 0.25, 6.31 ± 0.14, 2.07 ± 0.24, 

and 0.074 ± 0.14 µm at the five DPs from left to right along the cantilever. Correspondingly, 

the average changing rate of ∆x with respect to Fn was calculated to be 0.50 ± 0.009, 0.75 ± 

0.011, 1.48 ± 0.015, 4.49 ± 0.026, and 124.7 ± 0.914 µm/µN at the five DPs from left to right 

along the SMF cantilever. 

When the SMF cantilever and the fixed MMF were well aligned along their optical 

axis, the fiber-to-fiber end coupling efficiency reaches a maximum. However, the bending 

effect of the SMF caused a decrease in the coupling efficiency. Thus, to compute the optical 

power, P, detected at the output of the MMF as a function of ∆x, we employed the three-

dimensional finite-difference time-domain (FDTD) method based on the MEEP software 

package.51 This method allowed us to include the dielectric (or refractive index) properties of 

all device components (the SMF cantilever, the MMF, and the surrounding environment) into 

the model. Thus, the simulation inherently took into account the effect of the light refraction 

at the fiber side–water and fiber end–water interfaces on the final optical readings. The 

computing region is shown in Fig. 2.3a. A 10 µm thick perfectly matched layer (PML) was 

applied at the boundaries of the entire computing region. A transverse electric (TE)-polarized 

line source was placed at the input of the SMF cantilever. Fig. 3b shows the optical field 

distributions of the device at different bending conditions. The simulation result includes two 

factors for determining the level of reduction in the output optical power, including the axial 

misalignment between the two fibers, and distortion of the SMF’s fundamental mode field 

(due to small-angle bending). By combining the results shown in Figs. 2a and 3c, we 
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obtained the relationship between the normalized P and applied Fn (Fig. 2.3d). The result 

shows that P decreases with increasing Fn applied at each DP. 

 

Fig. 2.3 (a) Top-view schematic of the computing region used in the 3D finite-difference 

time-domain (FDTD) simulation. (b) Optical field distributions in the optical coupling region 

between the SMF cantilever and MMF under different bending conditions: ∆x = 0, 5, 15, and 

25 µm. The fields were extracted in the horizontal plane at the optical axis of the two fibers. 

(c) FDTD simulation result of normalized optical power detected at the output of the 

receiving MMF, as a function of deflection ∆x at the end of the SMF cantilever. (d) 

Simulation result of normalized optical power as a function of Fn applied to the SMF 

cantilever at different DPs. 
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It is desirable to employ longer SMF cantilevers to achieve higher mechanical 

sensitivity to an applied Fn, but practically, to prevent the worm under test from crossing 

over the SMF cantilever to the other side of the sine-wave channel, the SMF cantilever 

needed to be suspended horizontally in the channel. Thus, the length of the cantilever was 

actually limited by natural elastic deflection of the cantilever in the vertical direction. Our 

ANSYS simulation result indicates that the 2 mm long SMF cantilever (used in the previous 

figures) dropped about ∆z = 0.75 µm at the free end of the cantilever from the horizontal 

direction. With this design, 10.66 % of 244 worms were observed to cross over the 

cantilevers at the 1st DP (see the Handling of Nematodes section). As mentioned in the 

Introduction section, nematodes generally maintain their motion generation mechanism by 

producing lateral thrust, We thus believe that there was little vertical force exerted to the 2 

mm long SMF cantilever when the central optical axis of the cantilever was designed to be at 

half the worm diameter above the substrate. Fig. 2.4 shows a failure of the force test with a 4 

mm long SMF cantilever having a relatively large drop of ∆z = 2.1 µm at its free end. Since 

the head part of the worm was a little sharp relative to other parts and could move in more 

complex ways, the worm had a relatively high chance to first move its head on the upper part 

of the cantilever, and then, cross over the cantilever from the top of the cantilever via the 

lateral motion. According to our observation on 55 worms, ~52.7 % of the worms crossed 

over the 4 mm long SMF cantilever. Thus, the length of the SMF cantilever was chosen to be 

2 mm for the present device. 

 

 



www.manaraa.com

36 

 

 

Fig. 2.4 Optical images for a SENS O. dentatum larvae crossing over the 4 mm long SMF 

cantilever from the top of the cantilever at the 1st DP of the device. Scale bars represent 20 

µm. 

2.3.2 Device fabrication 

Figs. 2.5a-f shows the fabrication processes for the proposed device. First, 

poly(dimethylsiloxane) (PDMS) microstructures (e.g., the sine-wave channel, and the 

alignment structures for the fibers) are replica molded using conventional soft lithography 

techniques (Fig. 2.5a).52 The silica SMF (SMF-28, Corning) and the MMF (62.5/125-CPC6, 

Corning) are immersed in 49 wt.% hydrofluoric (HF) acid solution at room temperature for 

120 and 60 mins, respectively. This allowed us to pre-thin the SMF from 125 µm down to 25 

µm, and the MMF from 125 µm to 65 µm. Then, the two fibers were inserted and positioned 

in the alignment structures, with the help of a micropositioner (Fig. 2.5b). To form a 10 µm-

diameter SMF cantilever, we protected the MMF from being etched by a buffered HF (BHF, 

10 vol./vol. %) solution. Thus, the channel was filled up with a precursor solution consisting 

of isobornyl acrylate (IBA), tetraethylene glycol dimethacrylate, and 2,2-dimethoxy-2-

phenylacetophenone with a weight ratio of 32 : 1.7 : 1.0 (Fig. 2.5c).53 The precursor solution 

was then selectively polymerized under ultraviolet light (10 mW/cm2, 24.8 s) with a 

photomask. This allowed for formation of HF resistant poly-IBA structures around the MMF 

and fixing one end of the SMF (Fig. 2.5d). Next, the flexible part of the SMF was etched 

down to 10 µm diameter in the BHF solution for 75 mins (Fig. 2.5e). Note that the removal 

of the fiber cladding did not interfere with light guidance through the silica core, since the 

original refractive index cladding (n = 1.463) was replaced by water (n = 1.333).54 Lastly, the 
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PDMS structure was bonded to a glass slide by oxygen plasma treatment (Fig. 2.5f). Thus, 

the fiber-optic microfluidic device was formed.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 (a-f) Fabrication processes for the device. (g) Optical images showing the SMF 

cantilever at five different locations. (f) Optical image showing nine SMFs fabricated in 

different runs using the same chemical wet etching method. Scale bars in (g) and (h) 

represent 20 µm. 

 

It should be pointed out that the final diameter and uniformity of the SMF cantilever 

would significantly influence the mechanical properties and thus the actual readings of the 

muscular forces. The use of the low average etching rate of 0.2 µm / min during thinning the 

SMF from 25 to 10 µm ensured a relatively high uniformity in the final diameter of the SMF 

cantilever. As shown in Figs. 2.5h and 2.5g, the final diameter of the fabricated SMF 

cantilever was 10.03 ± 0.12 µm (mean ± standard deviation, obtained by averaging the 

measurement results over nine SMF cantilevers with each cantilever providing 5 data points). 

Note that these SMF cantilevers were fabricated in different runs by using the same chemical 

wet etching method, demonstrating the reproducibility of forming the desired thin SMF 

cantilever (the most important component of the device). 
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2.3.3 Optical measurement setup 

In our optical measurement setup, a fiber pigtailed laser diode of 1310 nm nominal 

wavelength (LPS-1310, Thorlabs) was used as an external light source and coupled into the 

SMF cantilever. Real-time output signals from the MMF were detected by an optical power 

meter (1918-R, Newport) with built-in data acquisition software.  

2.3.4 Velocity measurement 

While the present force sensing scheme did not require using a microscope or a 

camera, we used a stereo microscope (MZ205, Leica) and a video camera (QICamera) to 

show the worm-SMF cantilever interactions and measure the average moving velocity of 

worms exposed to anthelmintic levamisole with different concentrations (Fig. 2.8). The 

worm average velocity was defined as the continuous forward linear distance travelled by a 

worm’s head with respect to time. The stereo microscope-camera system captured a series of 

digital images (1392 × 1040 pixels) at a specified time interval of 100 ms. The images were 

sequenced and compressed into the Audio Video Interleave (.avi) video format. The .avi 

video was post-processed by a worm tracking program that was able to extract track 

signatures and locomotion (e.g., number and duration of stops, and cut-off region) of 

individual and/or worms.45 Briefly, the program analyzed a large number of images to 

recognize a moving object (here worm) and then, extract motility parameters such as 

amplitude, wavelength, body postures, and path traversed by the worm. 

2.3.5 Parasitic nematode O. dentatum  

Many nematodes are ubiquitous soil-dwelling organisms and are crucial for 

maintaining soil nutrients and overall symbiotic relationships between plants and other 

organisms.55 However, many of the more than 10,000 known nematode species are parasitic, 

infecting plants (e.g. corn, soybean, wheat, and other food grains), animals (e.g. pigs, sheep, 
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goats, and cows) and humans.56 The parasitic nematode used in this research, O. dentatum, is 

a hog parasite that causes nodule growths in the pig’s gut wall. These nodules repress growth 

and thereby reduce available pork yield. It is similar to the Oesophagostomum species 

parasites of humans.  

Parasitic nematode larvae SENS (levamisole-sensitive) and LEVR (levamisole-

resistant) O. dentatum were originally supplied by the Royal Veterinary and Agricultural 

School, Frederiksberg, Copenhagen and then reproduced at 6 – 9 month intervals by passage 

in pigs at the Iowa State University, Ames, Iowa. The L3 larvae isolates were maintained 

between passages in tap water refrigerated at 11 °C (changed every 2 – 4 months). They were 

about 6 months old and 400 – 500 µm long and about 25 µm diameter when used for our 

experiments.  

2.3.6 Handling of nematodes  

A conventional pipette was used to transfer O. dentatum worms to the sine-wave 

channel at the worm inlet of the device. No attractant was used to drive worms inside the 

channel. With the gap D between the SMF and the lowest edge of the channel’s upper 

sidewall of 20 µm, 183 (75 %) out of 244 worms moved through all five DPs, 26 (10.66 %) 

crossed over the cantilever at the first DP, and 35 (14.34 %) were stuck at the first DP that 

could be sucked out by a pipette through the inlet of the device.  

2.4 Results and Discussion 

Fig. 2.6a shows time-lapse images for a SENS worm interacting with the SMF 

cantilever at different DPs of the device. Each measurement presented here was the mean ± 

standard deviation obtained from 22 observations. As the worm squeezed through the 1st, the 

2nd, the 3rd and the 4th DP from left to right (Fig. 2.6a), the maximum deflection at the free 

end of the SMF cantilever was ∆x = 19.3 ± 0.92, 11.6 ± 0.83, 6.9 ± 0.85, and 2.5 ± 0.81 µm 
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(Fig. 2.6b), respectively. The decreasing tendency of ∆x was observed in the microscope and 

shows good agreement with the simulation result with Fn = 9.16 µN (Fig. 2.2b). Fig. 2.6c 

displays a typical time-varying optical power signal measured at the output of the MMF as 

the worm travelled through the whole channel. Interestingly, the optical power decreased 

respectively by 90.4 ± 3.92, 65.2 ± 4.22, 41.2 ± 3.88, and 20.2 ± 4.18 %. This resulted from 

decreasing the deflection of the cantilever as the worm-SFM contact occurred closer to the 

fixed end of the cantilever. By extrapolating from the Fn–P curve shown in Fig. 2.3d, the 

magnitude of Fn imposed by the worm onto the cantilever at the four DPs (from left to right) 

was found to be 9.02 ± 0.23, 8.87 ± 0.28, 9.23 ± 0.33, and 9.13 ± 0.36 µN, respectively (Fig. 

2.6d). The force measurement result revealed that the worm generated almost an equal 

amount of Fn = 9.16 ± 0.32 µN, during squeezing through the multiple DPs (Fig. 2.6d). 

Therefore, the closer the DP was to the fixed end of the cantilever, the less the cantilever 

deflection was, as shown in Fig. 2.6b. The small standard deviation of Fn might be attributed 

to individual differences between the worms and/or slight geometric difference between the 

multiple DPs. We point out that the reduction of optical power due to the worm-SFM contact 

at the 5th DP was not large enough to be read by the photodetector, which will be discussed 

later. Nevertheless, by integrating multiple structurally similar DPs to the sine-wave channel 

along the SMF cantilever, the device provided multiple force data allowing additional 

validation. 
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Fig. 2.6 (a) Time-lapse images for a SENS O. dentatum worm pushing the SMF cantilever 

away from the sine-wave channel at different four DPs from left to right shown in Fig. 2.1. 

Blue arrows indicate the time-varying sequence of images. Scale bars represent 100 µm. (b) 

Displacement ∆x at the end tip of the SMF cantilever at different DPs. At the 5th DP, only 

simulation data is shown due to insufficient deflection of the SMF cantilever. Experimental 

data were obtained via direct microscopic imaging. Calculated data were obtained using 

ANSYS software. Fn = 9.16 µN was used in the simulation. (c) Normalized optical power 

measured at the output of the receiving MMF as a function of time. (d) Experimental normal 

force (left axis) measured when the worm-SMF interactions occurred at the first four DPs. 

No readable signal was found at the 5th detection point.  

 

To examine the influence of the gap D between the SMF and the lowest edge of the 

channel’s upper sidewall on force generation of the worms, we varied D from 5 to 50 µm 

with steps of 5 µm. The SENS worms were taken from the same batch as those used above, 

having the body diameter d-worm = ~25 µm. When D = 5 and 10 µm, the worms could 

hardly squeeze through the 1st DP, while instead they touched the cantilever and then 

oscillated locally. Thus, with this design, the device was not able to detect force of the 

worms. As the gap increased becoming comparable to or slightly less than the diameter of the 
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worm, about 75 % of the worms were able to get into the gap and push the cantilever away to 

pass through the sine-wave channel. Figs. 2.7a-c show the optical power signals detected at 

the output of the MMF for the worms with d-worm = ~25 µm when D = 15, 20, and 25 µm, 

respectively. As D increased, Fn of the worms increased (Fig. 2.7e). Each data point in Fig. 

2.7e was obtained from measurement of 9 worms. An intuitive explanation is that the worms 

needed to generate a larger squeezing force to go through a narrower space. When D 

increased further to be greater than 30 µm, the worms were observed to have relatively 

random and insufficient contacts with the SFM cantilever, resulting in random optical power 

signals at the output of the MMF. In addition, we examined the influence of the body 

diameter of nematodes d-worm on their muscular force generation when the gap D was fixed. 

Fig. 2.7d shows the detected optical power signal as a large SENS (d-worm = ~30 µm) went 

through the DPs with D = 25 µm. Compared to the small worms (d-worm = ~25 µm) with Fn 

= ~5.58 µN, the large worms (d-worm = ~30 µm; 9 worms tested) generated a larger Fn = 

~8.62 µN, which was 54.5 % more than the small ones (Fig. 2.7e), to pass through the same 

DPs.  
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Fig. 2.7(a-c) Normalized optical power measured at the output of the MMF as function of 

time when the initial gap distance between the SMF cantilever and the lowest edge of the 

channel’s upper sidewall D = 15 µm (a), 20 µm (b), and 25 µm (c) with the worm (SENS) 

diameter d-worm = ~25 µm, and D = 25 µm with d-worm = ~30 µm (d). (e) Normal force of 

the worms measured at the first four DPs with respect to D and d-worm. 
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According to the time-varying optical power measurement results shown in Figs. 2.6c 

and 2.7a-d, the mean background noise power level of the detection system, Pns, was 

approximately 2.5 % of the maximum output optical power, Pmax. Thus, by looking at Figs. 

2.3c and 2.3d, a noise equivalent displacement (NED) of the cantilever and a noise 

equivalent force (NEF, at the 1st DP) of the device was found at 0.28 µm and 143 nN, 

respectively. When the worm-body contact occurred at the last or the 5th DP, the predicted 

deflection of the cantilever was only ∆x = 0.074 µm (Fig. 2.2b). No obvious optical signal 

reduction or force data were thus detected at this DP.  

As shown in Fig. 2.3d, the magnitude of the output optical signal was almost 

saturated at a low level when the SMF deflection goes beyond 23 µm from the central optical 

axis of the SMF. Thus, we defined the upper boundary of detection range of the device at 

each DP to be the force at which the saturation starts. It is also noteworthy that the upper 

limit of the detection range varied with numerical aperture of the MMF, and with the end-to-

end distance between the SMF and MMF. Here we define the lower boundary of detection 

range to be two times the value of NEF at each DP. Table 1 summarizes the NEP and 

detection range of the device.  

Table 1. Summary of the noise equivalent force and detection range of the device at each DP 

Detection 

point 

Noise equivalent force 

(µN) 

Detection range 

(µN) 

1st 0.143 0.28−12.48 

2nd 0.21 0.42−16.65 

3rd 0.42 0.84−34.02 

4th 1.29 2.58−103.17 

5th 36.02 72.04−3094.60 

 

Many anthelmintic drugs act on the neuromuscular system of nematodes, causing 

neuromuscular contraction.16 Drug resistance of parasitic nematodes may be related to effects 

on the signalling-muscle-contraction pathways by these drugs.16 We conducted an initial pilot 



www.manaraa.com

45 

 

experiment to explore the possibility of adapting the present force measurement technique to 

examine muscular force dose responses of the SENS and LEVR O. dentatum larvae to the 

anthelmintic levamisole. The levamisole solutions with different concentrations were 

prepared by dissolving levamisole stock solution with appropriate amounts of M9 buffer 

solution. The recipe for the M9 buffer (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 mL 1 M 

MgSO4, and H2O to 1 L) was a standard recipe. The devices used here had the same D = 20 

µm as those used in the previous experiments. Each data point in Fig. 2.8 was obtained from 

measurement of 11 worms. 

Fig. 2.8a shows that as the levamisole dose increased from 1 to 20 µM, Fn of the 

SENS isolate increased from 9.16 to 15.25 µN. The result is logical as the levamisole 

depolarized muscle and increased muscle contraction and thus the muscular force of the 

whole worm. No force data were obtained at 25 µM and higher concentrations because the 

SENS isolate became paralyzed at those high doses. On the other hand, for the LEVR isolate, 

there was only a slight increase in Fn as the levamisole concentration increased from 1 to 20 

μM. At the higher concentration of 25 µM, an obvious increase of Fn occurred to the LERV 

isolate. Also, the result in Fig. 2.8a indicates that in the presence of the same dose of 

levamisole below 20 µM, the drug effect on the SENS muscles in the normal direction (with 

respect to the movement) was greater than that on the LEVR muscles. Thus, we have 

observed the distinct phenotype differences in the muscular force of the SENS and LEVR 

isolates when exposed to levamisole. The result was consistent with the larval migration 

studies where SENS was inhibited more than LEVR by levamisole.16 To relate the muscular 

force phenotype to the locomotive behavior of the worms, we tested the moving velocity of 

the SENS and LERV isolates on a 1 inch diameter Petri dish. The result in Fig. 2.8b shows 
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that although the average velocity of both of the isolates decreased with increasing 

levamisole concentration, the LERV was less sensitive to levamisole than the SENS in terms 

of the moving velocity. The cause of the velocity reduction may be associated with the 

increasing muscular force in the direction normal to the worm’s translational movement and 

thus the resultant spastic paralysis. Thus, the device allowed for clear separation of the 

muscular force phenotype differences between nematode isolates. The drug response test 

conducted here not only verified the workability of the present technique further, but also 

demonstrated the useful capability to bridge the observations on the motility and the 

muscular force generation of individual worms when exposed to different drug environments. 

 

Fig. 2.8 Normal force (a) and moving velocity (b) of the SENS and LERV isolates as a 

function of levamisole concentration. The moving velocity is tested on plate 

 

 



www.manaraa.com

47 

 

2.5 Conclusions 

To summarize, we have developed an integrated fiber-optic microfluidic device 

capable of measuring the muscular force of nematode worms normal to the translational 

movement direction. Multiple identical DPs were formed along a thinned SMF cantilever 

horizontally placed adjacent to a sine-wave channel with multiple open troughs. Physical 

contacts between a moving worm and the SMF cantilever at the DPs bent the SMF 

cantilever, reducing light coupling from the SMF to the receiving MMF. Thus, the SMF 

cantilever transduced the normal force of the worm into optical transmission signals. We 

have demonstrated the workability of the device to detect normal forces exerted by the O. 

dentatum L3 larvae onto the SMF cantilever. It was important that the space dimension 

between the SMF cantilever and the sine-wave was comparable to or slightly less than the 

diameter of the worm. We have shown that the worm imposes an equal amount of normal 

force on the SMF cantilever at different DPs. The NEP of the device was 143 nN at the 1st 

DP. We have measured the force responses of the SENS and LERV O. dentatum larvae to 

different doses of the anthelmintic levamisole. The result showed that the both of the isolates 

generate larger muscular (normal) force when exposed to a higher concentration of 

levamisole, and the SENS muscles were more sensitive to levamisole than the LEVR 

muscles. We have noticed muscular force differences between the two isolates in the degree 

of their drug resistance.  

The ability of the present device to measure muscular force of multicellular 

nematodes can benefit and advance the current whole animal assays. For example, 

conventional nematode motility assays (e.g., larval migration assay57) for detection of drug 

resistance uses a mesh system, where the worms resistant to a certain anthelmintic can move 
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through the mesh, whereas the sensitive worms are restricted. The output information 

obtained is thus only a percentage of worms that are inhibited by the applied drug. Recent 

microfluidic approaches, along with imaging systems and automated algorithm, have made it 

possible to provide important phenotypic parameters of nematodes such as average velocity 

and oscillation frequency.58,59 However, these methods are limited by a lack of more direct 

measures of drug resistance. Since drug resistance of parasitic nematodes may be associated 

with the many different changes in signalling-muscle-contraction pathways, our technology 

will have the potential to provide a more direct measure of the effectiveness of drugs, by 

qualifying the muscular force of parasitic nematode species. Furthermore, this technology 

can provide a new insight into developing better quantitative models for revealing phenotypic 

differences in nematodes under various drug concentrations, as well as screening mutants at 

the single animal resolution.   
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CHAPTER 3 

MICRO-ELECTRO-FLUIDIC GRIDS FOR NEMATODES: A LENS-LESS, IMAGE-

SENSOR-LESS APPROACH FOR ON-CHIP TRACKING OF NEMATODE 

LOCOMOTION 

A paper published in Lab on a Chip 

 

Peng Liu,  Richard J. Martin and Liang Dong 

 

3.1 Abstract 

This paper reports on the development of a lens-less and image-sensor-less micro-

electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic 

nematodes. The technology showed promise for overcoming the constraint of the limited 

field of view of conventional optical microscopy, with a relatively low cost, good spatial 

resolution, and high portability. The core of the device was microelectrode grids formed by 

orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode 

arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a 

nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of its body 

parts into some intersection regions between the microelectrodes caused changes in electrical 

resistance of these intersection regions. The worm’s presence at or absence from a detection 

unit was determined by a comparison between the measured resistance variation of this unit 

and a pre-defined threshold resistance variation. An electronic readout circuit was designed 

to address all detection units and read out their individual electrical resistance. By this means, 

it was possible to obtain the electrical resistance profile of the whole MEF grids, and thus, 

the physical pattern of the swimming nematode. We studied the influence of a worm’s body 

on the resistance of an addressed unit. We also investigated how the full-frame scanning and 
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readout rate of the electronic circuit and the dimensions of a detection unit posed an impact 

on the spatial resolution of the reconstructed images of the nematode. Other important issues, 

such as the manufacturing induced initial non-uniformity of the grids and the electrotaxic 

behaviour of nematodes, were also studied. A drug resistance screening experiment was 

conducted by using the grids with a good resolution of 30 × 30 µm2. The phenotypic 

differences in the locomotion behaviours (e.g., moving speed and oscillation frequency 

extracted from the reconstructed images with the help of software) between the wild-type 

(N2) and mutant (lev-8) C. elegans worms in response to different doses of the anthelmintic 

drug, levamisole. The locomotive parameters obtained by the MEF grids agreed well with 

those obtained by optical microscopy. Therefore, this technology will benefit the whole-

animal assays by providing a structurally simple, potentially cost-effective device capable of 

tracking the movement and phenotypes of important nematodes in various 

microenvironments. 

3.2 Introduction 

The microscopic nematode C. elegans is an important genetic model to address 

fundamental questions in developmental biology, neurobiology, and behavioural biology.1,2 

The locomotion behaviours of C. elegans are under complex neuronal regulation and affected 

by a plethora of factors such as chemicals, temperature, light, electric field, and age.3 

Tracking and analysis of the locomotive parameters (e.g., travelled distance, speed, 

amplitude, and oscillation frequency) of C. elegans and other important microscopic 

nematodes is crucial to provide the mechanistic correlation between the genotype and 

phenotype of the nematodes under various environmental conditions.4 Optical microscopic 

imaging technique is essential for observing and extracting movement information from live 
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nematodes.5-11 Conventional bench-top microscope, along with a digital camera and tracking 

software program, is a popular means of detecting the locomotive parameters of microscopic 

nematodes. The optical imaging system and the worm test vials or plates are independent of 

each other. This microscope-camera setup can provide very detailed information about the 

behaviours of nematodes. But, the relatively high cost and large footprint of the setup are not 

well suited for integration into a portable system-on-chip device. Besides, the limited field of 

view of the objective lens in the microscope makes it often difficult to simultaneously 

monitor multiple experiments in multi-well culture plates without an automated, high-

resolution motorized moving stage.12 This may become problematic when quantitative 

measurements are needed on a large number of nematodes at a single nematode resolution. 

Therefore, there is a great need of developing a cost-effective and structurally simple 

detection mechanism that potentially will have no any limitation to the field of view.  

Microfluidics is an attractive technology with the potential to streamline workflows 

and processes in the biomedical and health sciences.13-15 Due to the small size of microscopic 

nematodes such as C. elegans, there is growing interest in studying the nematodes in the area 

of microfluidics and lab on a chip.16-41 Many promising microfluidic technologies have been 

reported for culturing, manipulating, and analysing nematodes, including an automated 

microfluidic compact disc cultivation system,19 an artificial soil substrate for rapid delivery 

of fluid-borne stimuli to worms,20 a microfluidic device for directing worm movement and 

sorting worms based on the electrotaxic effect,21,22 a microdroplet technology for 

encapsulating individual worms for toxicology bioassays,23,24 a miniature worm clamping 

device for facilitating imaging and laser-mediated microsurgery,25-32 a microfluidic device 

for engineering various microenvironments for study of the sensory neuron and behavioral 
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activity of nematodes,33-36 a force sensing pillar array for biomechanical measurements of 

nematodes,37 a micro-maze for examining the behaviours of nematodes,38 a microchamber 

array for behaviour-based chemical screening with precise temporal control of stimuli,39 and 

a microfluidic device capable of recording electrophysiological signals of multiple worm 

immobilized inside microchannels.40 Recently, we also developed an optofluidic device for 

detecting muscular force generation of nematodes in response to various chemical 

environments.41 On the other hand, in order to monitor dynamic behaviours of live 

microorganisms with low cost and high throughput, several on-chip optical imaging 

technologies have recently been developed.42-45 A remarkable technology is the optofluidic 

microscope (OFM).42-44 The microorganism sample of interest is transferred into a channel 

and then imaged by a complementary metal-oxide-semiconductor (CMOS) or charge-

coupled-device (CCD) image sensor chip. An array of small circular apertures is located on 

top of the image sensor chip, spanning across the whole channel. When the channel is 

illuminated by an external light source, the sample casts a shadow on the image sensor and 

the time resolved transmission signal is converted into the spatial information of the sample. 

Some variations of the OFM device have been developed such as the sub-pixel resolving 

OFM,45 and the fluorescent OFM with a high submicron resolution.46-48 Another excellent 

optical imaging technique for microfluidic applications is the digital in-line holography 

(DILH).49-55 In this technology, a channel device contains the microorganism of interest and 

is placed between the light source and the recording plane of a CMOS/CCD image sensor. 

The light source is spatially filtered by a pinhole to increase the coherence length. The 

scattering wave from the sample interferes with a reference wave from the light source. Thus, 

a hologram or interference pattern is formed by the superposition of the two wave fronts for 
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digital recording. Another representative technique for optical imaging of microorganisms is 

the lens-less, wide-field monitoring array based on the shadow imaging principle, while also 

relies on using a CMOS/CCD image sensor.56,57 The device has been shown to detect and 

count thousands of individual cells in real time. Despite the considerable progress in the 

development of compact on-chip imaging-based tracking systems for microfluidic 

applications, almost all of the existing technologies essentially utilize the optical effects, such 

as shadow and interference patterns due to the presence of microorganisms, and thus, 

inevitably require a sophisticated imaging sensor chip, along with a light source, for 

observation.  

In this paper, we report on the development of a non-optical, integrated device for on-

chip detection of the locomotion behaviours of nematodes, with a cost-effective and simple 

architecture, and fair spatial resolution. The present technology requires no lens or image 

sensor chip. The core of the device consists of two identical linear arrays of thin-film 

microelectrodes arranged orthogonally on two glass slides. Each microelectrode array has N 

periodically spaced electrode strips. Thus, N × N intersection regions are formed between the 

upper and lower microelectrode arrays. A microfluidic chamber is created between the two 

glass slides, where a worm under test will swim freely (see a video clip in Electronic 

Supporting Information). As the nematode moves inside the microfluidic chamber, its body 

may appear in several intersection regions of the microelectrodes. Because the electrical 

resistivity of the worm’s body is often different from that of the surrounding medium, a 

resistance change is detected at an intersection region that indicates the presence of part of 

the worm’s body near the intersection region. By electrically addressing all intersection 

regions and probing their individual resistances in a short time period (before the worm 
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changes its posture) using an electronic scanning and readout circuit, it is possible to get the 

electrical resistance profile, and thus, the physical pattern, of the moving nematode. 

Generally, microscopic nematodes such as C. elegans move relatively slow and exhibit a 

sinusoidal pattern induced by alternating dorsal and ventral muscle contraction. C. elegans 

swims with an oscillation frequency (fworm) ranging from a fraction of one Hz to several Hz. 

As discussed later, by increasing the full-frame scanning frequency (fsc) of the electronic 

circuit, the swimming nematode under test could be treated as a static object during a 

measurement cycle of tsc = 1 / fsc. This enabled us to obtain the movement patterns or 

behavioural information of the nematode in a quasi-real time manner. To prevent the 

electrotaxic behaviour of the worms (moving toward the cathode) and the electrokinetic 

effects (electrophoresis of the worms and electro-osmosis of the surrounding fluid) within the 

MEF grids, the electric field applied between two orthogonal microelectrodes for the 

resistance measurement was set to be lower than the threshold field strength of the 

electrostatic and electrokinetic effects, which will be discussed later. 

 

 

Fig. 3.1 Schematic of the proposed MEF grids for detecting the locomotion behaviours of 

microscopic nematodes. 
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3.3 Methods and Experimental Details 

3.3.1 Theoretical estimation 

We first theoretically estimated how the presence of part of the worm’s body affected 

the electrical resistance of an addressed intersection region of the microelectrodes. The three-

dimensional finite element analysis (FEA) method based on the commercial software 

COMSOL was employed for this simulation. The variables W and D denote the width of 

microelectrode and the spacing between two neighbouring microelectrodes, respectively 

(Fig. 3.2a). A detection unit or an image pixel was constructed by extending D / 2 from each 

side of an intersection region (see the white dashed line square in Fig. 3.2a), covering a 

square area with the side length of D + W. Thus, the centreline between any two 

neighbouring microelectrodes on the glass substrate served as the boundary of detection 

units. A microfluidic chamber was formed between the upper and bottom glass slides. The 

depth or height of the chamber was set to be H = 50 µm because generally, L1-L4 stage C. 

elegans larvae is no more than 50 µm in diameter. The side length of detection unit was set to 

be D + W = 30 µm. For simplification of the FDTD analysis, D = W = 15 µm.  
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Fig. 3.2 (a) Simulated electric field distributions at the X-Y plane (upper row) and Z-Y plane 

(lower row) of the MEF grids as the worm’s body part appears at different locations relative 

to an addressed detection unit. d is denoted as the planar centre-to-centre distance d between 

the worm’s body part and the intersection region. From left to right: d = ∞, 30 µm, 15 µm, 5 

µm, and 0. For simplification, part of a nematode’s body was modelled by a 60 µm long, 30 

µm diameter cylinder laid on side within the grids. The height or depth of the grids was set to 

be H = 50 µm. The side length of detection unit was set to be D + W = 30 µm with D = W = 

15 µm. The field distributions in the upper row were observed at the planar central plane H / 

2 above the lower substrate of the device. The field distributions in the lower row were 

observed at the Z-Y plane across the spatial centre of the unit (Xi, Yi). (b) Simulated relative 

resistance variation ∆R / R as a function of d. (c) Simulated threshold relative resistance 

variation (∆R / R)th as a function of a side length D + W of a detection unit with D = W and H 

= 50 µm. (d) Simulated (∆R / R)th as a function of a depth of the grids or H with D + W = 30 

µm and D = W. 

Modelling a whole nematode flexibly moving inside the MEF grids was fairly 

difficult due to the changing body posture of the nematode over time. Here, we used a 60 µm 

long and 30 µm diameter cylinder (laid on side within the grids) to represent just part of the 

worm’s body interacting with a selected detection unit. The planar coverage area of the 

cylinder (30 µm × 60 µm) was thus twice that of the detection unit (30 µm × 30 µm). We 

found that the simulation results with a cylindrical object longer than 60 µm was almost the 
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same as those with the 60 µm long cylinder used here. The electrical resistivity of the worm’s 

body and of the M9 buffer (or the medium in the microfluidic chamber) was ~350 Ω·cm and 

~104 Ω·cm, respectively. Fig. 3.2a shows that as the worm’s body part moved toward the 

spatial centre of the selected detection unit, the electric field distributions inside and outside 

of this unit significantly changed and the electrical resistance R measured at this unit 

increased (∆R > 0). When the body part completely overlapped the intersection region, the 

simulated maximal relative resistance variation ∆R / R reached 24.6 %. However, to 

distinguish between the worm’s presence at and absence from a detection unit, we defined 

the threshold relative resistance variation (∆R / R)th as the critical ∆R / R detected when the 

worm reached the boundary of the selected unit (see the 2nd panel of Fig. 3.2a). The 

simulated value of (∆R / R)th was ~7.9 %, below which the body part could be interpreted to 

be outside of the unit, and above which the body part was considered to be inside the unit. As 

we can see later, there inevitably existed a certain level of the manufacturing induced initial 

resistance variation between all detection units. Therefore, only if the absolute value of (∆R / 

R)th or |(∆R / R)th| was greater than the original resistance variation, the MEF grids device 

would be able to detect the presence of a worm’s body part at a detection unit. Figs. 3.2c and 

3.2d show the influence of the side length D + W and the height H of the detection unit on 

(∆R / R)th. The results indicate that having a small D + W would lead to a high (ΔR / R)th. 

This could make it easier and more accurate to detect the presence/absence of a worm’s body 

part. Also, as the depth of the detection unit increased from 30 µm to 80 µm, the simulated 

(∆R / R)th was found to significantly decrease from 9.4 % to 4.3 %. Although using a low H 

was preferable, the minimum H was determined by the body diameter of the worm under 

test. It is also important to point out that the proposed lens-less, image-sensor-less detection 
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approach can work not only for larval stage (L1-L4) C.elegans, but for young adult and older 

ones (that can get as thick as ~100 µm) by increasing H. 

3.3.2 Fabrication for microelectrode grids 

To fabricate a microelectrode array, a 10 nm thick titanium (Ti) layer and a 250 nm 

thick gold (Au) layer were deposited on a glass slide using e-beam evaporation. The Ti layer 

was used to improve adhesion between the Au layer and the glass slide. The Ti-Au composite 

layers were then patterned by conventional photo-lithography, followed by chemical wet 

etching with Au etchant (GE-8148, Transene). Two identical microelectrode arrays were 

formed on two respective glass slides by using this method. To control the depth of a 

microfluidic chamber between the two arrays, SU-8 photoresist (SU-8-50, MicroChem) was 

used to form a fence along the edges of one glass slide. Lastly, the MEF grids were formed 

by placing the two microelectrode arrays face-to-face and orthogonal to each other (Fig. 

3.3a).  

 

Fig. 3.3 (a) Fabrication processes for the microelectrode grids: deposition of Ti and Au → 

patterning of microelectrodes → patterning of photoresist fence → assembly of the device by 

orthogonally stacking two identical microelectrode arrays under microscope. (b) Architecture 

of the electronic circuit for the grids. (c) Representative digital signals for addressing 

detection units on the chip.  
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3.3.3 Full-frame scanning and readout electric circuit  

Fig. 3.3b shows the architecture of the electronic circuit designed for the fabricated 

MEF grids (24 rows and 24 columns). A field programmable gate array or FPGA (Altera 

Cyclone II) was used and programmed to respectively control a vertical and a horizontal 

multiplexer (MUX) combo for addressing individual detection units. The electrical resistance 

of an addressed detection unit was readout by a multimeter (3458A, Agilent) with 100000 

readings s-1. The multimeter communicated with data acquisition and analysis software 

through the parallel general purpose interface bus (GPIB) transceiver. To adjust timing with 

the multimeter, the FPGA was interfaced with the software using the series RS232 

communication protocol.  

To verify the timing properties of the hardware design, the timing simulation was 

performed on the ModelSim platform. Fig. 3.3c shows part of the timing result as an 

example. The horizontal microelectrode Y1 was selected by the MUX combo-2. The vertical 

microelectrodes from X1 to X24 were sequentially selected by the MUX combo-1 at each 

raising edge of the clock. Thus, the 24 detection units ((X1, Y1), (X2, Y1), …, (X24, Y1)) in 

row Y1 were addressed one by one. This allowed the multimeter to read out their electrical 

resistance. To obtain the full-frame resistances, this process described above needed to repeat 

24 times, taking a period time of tsc = 24 × 24 × TCLK where TCLK was the clock period. We 

note that TCLK can be adjusted by the hardware (FPGA) and software (Verilog hardware 

description language). The typical value of TCLK was 10 µs, obtained by dividing the on-

board oscillator frequency fosc (Cyclone II FPGA has fosc = 50 MHz) by an integer m (m = 500 

was chosen here) via coding in Verilog.  
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3.3.4 Image reconstruction and parameter extraction 

The electrical resistance matrix Ri,j of order N × N was obtained by reading out the 

resistances of all detection units, where Ri,j(t) (i, j = 1, 2, …, N) represented the resistance of 

the detection unit at the intersection of line i and row j at time t. Then, the resistance variation 

matrix ∆Ri,j(t) was calculated by ∆Ri,j(t) = Ri,j(t) − Ri,j(t0), where Ri,j(t0)  was the original 

resistance matrix at t0 = 0 without worm introduced. Lastly, the relative resistance variation 

matrix ∆Ri,j(t) / Ri,j(t) was obtained for the image reconstruction. To convert the matrix 

∆Ri,j(t) / Ri,j(t) to a grayscale image, we used the function “mat2gray” in the MATLAB image 

processing toolbox to apply a linear scaling and offset to the matrix. The minimum value was 

mapped to 0 (black) and the maximum value was mapped to 1 (white). Other values in the 

matrix were linearly scaled into corresponding grayscale values. Thus, the grayscale image of 

the matrix ∆Ri,j(t) / Ri,j(t) was formed. To convert the matrix ∆Ri,j(t) / Ri,j(t) to a binary image, 

each element value in the matrix was compared with the threshold (∆R/R)th. When ∆Ri,j(t) / 

Ri,j(t)  < (∆R / R)th, a binary 0 (black) appeared at the pixel of the reconstructed image. In 

contrast, when Ri,j(t) / Ri,j(t) >  (∆R/R)th, a binary 1 (white) appeared at the pixel. To display a 

pseudocolour map of the matrix for an input data set, the function “corrmap.m” of the 

MATLAB was used. 

The motility parameters were analysed by using the worm tracking program we 

previously developed for a microscope-camera tracking system.41,58 Briefly, the binary 

images were sequenced and compressed into the Audio Video Interleave (.avi) video format. 

The .avi video was post-processed by a worm tracking program that was able to extract track 

signatures and locomotion (e.g., number and duration of stops, and cut-off region) of 

individual and/or worms. The program analysed a large number of images to recognize a 

moving object (here worm), and then, extract motility parameters such as amplitude, 
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wavelength, oscillation frequency, body postures, path traversed by the worm, and average 

moving velocity.  

3.3.5 Optical tracking system for comparison purposes 

To compare the reconstructed images based on the MEF grids approach and their 

corresponding optical images, we used a stereo microscope (MZ205, Leica) equipped with a 

video camera (QICamera) to capture a series of digital images (1392 × 1040 pixels) at a 

specific time interval of 66.7 ms. The motility parameters of worms were extracted by using 

the worm tracking programmed aforementioned.   

3.3.6 Nematodes and liquid medium  

C. elegans worms (wild-type N2 and levamisole resistant ZZ15 lev-8) were obtained 

from the Caenorhabditis Genetics Centre at University of Minnesota (St. Paul, MN). They 

were cultivated at 25 °C on Nematode Growth Medium plates seeded with Escherichia coli 

OP50 bacteria. For the experiments, the worms were picked using a sterilized platinum wire 

and transferred to the microfluidic chamber through an opening in the top glass slide of the 

MEF grids. 

To test how nematodes changed their locomotion behaviours in the anthelmintic drug 

levamisole. The levamisole solutions with different concentrations were prepared by 

dissolving levamisole stock solution with appropriate amounts of the M9 buffer solution. The 

recipe for the M9 buffer (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 mL 1 M MgSO4, and H2O 

to 1 L) was a standard recipe taken from the Wormbook.59 

3.3.7 Resistivity of nematodes 

In the FEA simulation mentioned above, the electrical resistivity of nematodes was 

set to be 350 Ω·cm. This resistivity value was estimated by inversely calculating from the 
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measured total resistance of a detection unit when the worm’s body was positioned at the 

planar spatial centre of the detection unit (as we will see later in Fig. 3.5). Specifically, 

different values of electrical resistivity for the worm’s body were fed into the FEA software 

COMSOL to approach the measured total resistance of the detection unit. When the 

discrepancy between the simulated and experimental resistance of the detection unit was less 

than ± 1 %, the corresponding resistivity of the worm used in the simulation was regarded as 

the actual resistivity of the worm. It should be noted that no obvious change was found in the 

body resistivity of the worms at different stages (L1-L4). 

3.4 Results and Discussion 

Fig. 3.4 shows the original distribution of the electrical resistance of the 24 × 24 MEF 

grids with the M9 buffer as a medium but with no worm introduced. The microelectrodes 

used here were 15 µm wide and 15 µm spaced. The readout time for this whole resistance 

matrix was tsc = 5.76 ms at fsc = 174 Hz. The result shows that the initial relative variation 

between the maximum and minimum resistance was ~3.3 %, reflecting the manufacturing-

induced non-uniformity of the microelectrode geometry and dimensions.  

 

Fig. 3.4 Initial electrical resistance distribution of the fabricated 24 × 24 grids with W = D = 

15 µm. No worm was introduced to the grids. 
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To obtain an actual value of (∆R / R)th for a nematode C. elegans swimming in the M9 

buffer solution, a L3-stage worm (~30 µm diameter, and ~591 µm long) was introduced to 

the MEF grids operating at fsc = 174 Hz. Particularly,  we examined the electrical resistances 

detected at different detection units near the nematode at a time point. The distance between 

an addressed unit and certain body part of the worm was measured by using the optical image 

recorded by the stereo microscope at the same time point. Fig. 3.5a shows that when the body 

edge of the worm was on the boundary line of the unit, the experimental value of (∆R / R)th 

was found to be 8.1 ± 1.7 % (mean ± standard deviation, obtained from 60 resistance data 

obtained at 5 detection units). It is also obvious that as the nematode invaded deep into an 

addressed detection unit, the measured ∆R / R of this unit increased. The maximum value of 

∆R / R = 22.4 ± 1.8 % occurred when the detection unit was completely covered by the 

worm. Compared to the simulated plot of the ∆R / R vs. distance given in Fig. 3.2b, the 

experimental result showed a relatively good agreement with the simulated result. The 

discrepancy was probably caused by the simplified model used in the FEA study and the 

measurement error in the locations of the worm’s body part and its distance to an addressed 

unit. The histogram of the distribution of (∆R / R)th over 226 grids is given in Fig. 3.5b, 

showing a Gaussian-like distribution between 6.5 % and 10.5 %. We note that although there 

were a total of 24 × 24 = 576 grids in the MEF device, it was almost impossible for a worm 

to swim over with all grids.  
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Fig. 3.5 (a) Experimental result of ∆R / R as a function of d. d is the planar centre-to-centre 

distance between the worm’s body part and the intersection region. Two insets show the 

close-ups of a nematode swimming inside the MEF grids. The blue dashed lines outline part 

of the worm’s body parts. X and Y error bars represent standard deviations of the mean value 

of d and ∆R / R, respectively, from 60 resistance data obtained at 5 detection units. (b) 

Histogram of the distribution of (∆R / R)th in the MEF grids. The distribution was plotted 

based on the value of (∆R / R)th obtained at 226 grids. 

It should be pointed out that the experimental (∆R / R)th of 8.1 % was much higher 

than the manufacturing induced maximum original resistance variation of 3.3 %. Thus, we 

used (∆R / R)th = 8.1 % to distinguish between the presence and absence of a nematode 

relative to a detection unit during reconstructing a binary image of the nematode. In fact, one 

could also subtract the manufacturing-induced “background” profile (Fig. 3.4) from the 

actual resistance profile of the grids to blank out the heterogeneity of the original resistance. 

This, in principle, would allow for a better representation of the reconstructed nematode 



www.manaraa.com

69 

 

image. Here, because the value of (∆R / R)th was much higher than the maximum original 

resistance variation of the grids, we did not do subtraction operation in this work. It should be 

also pointed out that the reconstruction of the grayscale and pseudo colour images of a 

nematode was independent of the actual value of (∆R / R)th. 

Fig. 3.6 shows the time-lapse optical images and corresponding reconstructed pseudo 

colour, grayscale, and binary images of a moving C. elegans (L3) in the MEF grids. The 

device operated at fsc = 174 Hz and tracked the changes in shape and position of the worm 

over time. The reconstructed images were then analysed by the worm tracking program. It 

was found that the oscillation frequency and moving speed of the worm was fworm = 1.8 ± 0.3 

Hz and vworm = 270 ± 21 µm s-1, respectively (mean ± standard deviation, n = 12 worms). For 

comparison purposes, the optical microscope-camera setup was used to track the nematodes 

of the same developmental stage swimming in a 1-inch Petri dish containing the same M9 

buffer. The optical measurement revealed that fworm = 1.9 ± 0.3 Hz and vworm = 266 ± 17 µm 

s-1 (mean ± standard deviation, n = 12 worms), which were almost the same as those obtained 

by the MEF grids. Therefore, the present device was able to obtain the locomotion 

information for reconstructing the real-time images of nematodes for post-analysis of 

locomotive parameters. 
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Fig. 3.6 Optical images and corresponding reconstructed pseudo colour, grayscale, and 

binary images of a C. elegans swimming in the MEF grids. The full-frame scanning 

frequency was fsc = 174 Hz. The pseudo colour, grayscale and binary images were obtained 

from the electrical measurements. Scale bars represent 100 µm.  

The accuracy of detecting the position and shape of a moving nematode highly 

depended on the full-frame scanning rate fsc of the electronic circuit designed. Suppose that 

the device has N × N grids and the multimeter used in the system has a reading speed of n 

readings s-1. Thus, the allowable maximum fsc is n / (N × N) Hz or the electronic circuit takes 

(N × N) / n seconds to read out all N × N resistances. Furthermore, suppose that the nematode 

under test has the moving speed of vworm and the body wavelength of λ that can maximally 

crosses x number of microelectrodes in a direction. Thus, λ = x (D + W). As a result, the 

electronic circuit spends tact = (x / N) × (N × N / n) = x × N / n seconds on reading out the 

resistances of the detection units across over the nematode. Within the time period of tact, the 

worm may shift a maximum distance of ∆l = vworm × tact = (vworm × λ × N) / (n × (D + W)). It is 

obvious that the lower the value of ∆l, the higher the accuracy of detecting the position and 

shape of the moving object. By using a smaller number of microelectrodes N in the grids, the 
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electronic circuit can complete reading the N × N resistance matrix faster, thus decreasing the 

value of ∆l. However, it is noted that the minimum number of microelectrodes on each glass 

slide is determined by λ of the nematodes. Generally, larval stage C. elegans has the total 

body length of L ≤ 1 mm and moves at a speed of vworm ≤ 500 µm s-1. The present device was 

designed by taking half the total body length as the body wavelength or λ ≤ ~500 µm. 

Therefore, by choosing N = 24 and D = W = 15 µm, the grids could cover an area of 720 × 

720 µm2 that allowed larval stage C. elegans to move within the grids. Because the 

multimeter used here had n = 100000 readings s-1, the maximum fsc was set to be 174 Hz, 

resulting in a theoretical maximum value of ∆l = ~2 µm. We note that it was quite hard to 

obtain experimental ∆l in a short time of tact = x × N / n = (500 / (15 + 15)) × 24 / 100000 = 4 

ms. According to Fig. 3.5, a lateral shift of ~2 µm from the boundary of a detection unit may 

cause an erroneous variation in ∆R / R of ~0.4 %, which was much lower than the 

experimental (∆R / R)th = 8.1 %. Therefore, by appropriately setting the operation frequency 

of the device, the body movement induced erroneous variation during a full scanning cycle 

had little influence on the accuracy of tracking the nematodes, which was already 

demonstrated in Fig. 3.6. In fact, for a given electronic readout circuit, operating the device at 

the maximum fsc = n / (N × N) Hz could be easily achieved, simply by programming the 

hardware language (Verilog) on the computer. Fig. 3.7 demonstrates that the quality of 

reconstructed images varied with changing fsc. We found that when fsc < 10 × fworm, the 

nematode was displayed as the scattered white spots in the reconstructed binary image (Fig. 

3.7a). This is because the nematode moved considerably during a full scanning cycle. Thus, 

no valuable information about worm activities was obtained. Increasing fsc to 70~80 × fworm 

allowed these distributed spots to get closer, but the reconstructed image of the nematode 
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was still fragmented (Fig. 3.7b). When fsc increased to be more than 80 × fworm, a continuous 

body shape of the nematode was obtained (Fig. 3.7c).  

 

Fig. 3.7 Optical images and reconstructed grayscale, and binary images of a C. elegans 

swimming in the MEF grids at two different time points with different full-frame scanning 

frequency fsc =  8 Hz (a), 70 Hz (b), and 100 Hz (c). The grayscale and binary images were 

obtained from the electrical measurements. Scale bars in the optical and grayscale images 

represent 100 µm. Scale bars in the binary images (see insets) represent 200 µm. 

The pixel resolution of the reconstructed images decreased with increasing the value 

of D + W. Here, we designed another MEF grids device with D = W = 50 µm, 24 

microelectrodes on each glass slide, and 50 µm gap between the two glass slides. The device 

still operated at fsc = 174 Hz. A L3-stage C. elegans was introduced in the microfluidic 

chamber containing the M9 buffer. Similarly, by using the same method mentioned above, 

(∆R / R)th was found to be 3.8 ± 0.9 % in this case, which was close to the simulated ~3.5 % 

and greater than the manufacturing induced intrinsic resistance variation of ~3 % of this 

device (D = W = 50 µm). Thus, this device could determine the presence/absence of the 

nematode in the detection units as shown in Fig. 3.8b. However, although the movement of 

the nematode was detected, the use of the large-size detection unit resulted in the coarse 

images with only 5-7 pixels to outline the nematode in each image. Detailed information 

about the shape of the nematode was lost. We note that with the relatively low spatial 

resolution, the worm tracking program could identify the position of the worm and analyse 
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its average moving speed, but was difficult to derive important locomotive parameters such 

as oscillation frequency, amplitude, and wavelength. 

 

Fig. 3.8 Optical images and corresponding reconstructed grayscale and binary (inset) images 

of a C. elegans (L3) moving in the grids. The detection frequency was set to be at fsc = 174 

Hz.  The grayscale and binary images were obtained from the electrical measurements. Scale 

bars represent 400 µm.  

Other research has revealed that C. elegans at different developmental stages respond 

differently to electric field [21,22]. For example, early stage (L1 and L2) wild type C. 

elegans was little responsive to electric field with strength less than 13 V cm-1 before 

electrokinetic flows occurred. Whereas, L3, L4, and adult stage worms respond to electric 

field robustly starting from the threshold field strength of 4, 4, and 2 V cm-1, respectively, by 

swimming towards the cathode. Thus, in order to use the present device for different larval 
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stage C. elegans without physiological and behavioral side effects, we adjusted the test 

voltage of the multimeter (the actual voltage applied to the microelectrodes was 8 mV), by 

using external series connected resistors and a potentiometer. This could ensure the electric 

field applied between the top and bottom microelectrodes to be as low as ~1.5 V cm-1. 

Furthermore, we verified the responses of L1-L4 wild-type C. elegans to this electric field 

strength. Specifically, one of the bottom microelectrodes was set to be grounded, and also, an 

upper microelectrode was selected. Ten nematodes of each stage were respectively flowed to 

the microfluidic chamber. No directed swimming of the nematodes was observed at all five 

different stages. Fig. 3.9 shows fworm and vworm of the L1-L4 nematodes detected by both the 

present grids and the optical microscope-camera setup. The locomotive parameters were also 

derived and analysed by the worm tracking program. Since the two methods provided almost 

the same result, it was confirmed that the worms moving inside the grids were not affected 

by the applied low electric field and that the present electrical resistance measurement 

approach was effective and reliable to detect the locomotion behaviors of the nematodes.  
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Fig. 3.9 Oscillation frequency (a) and moving speed (b) of wild-type C. elegans worms at 

different developmental stages (L1-L4) detected by using the present MEF grids and optical 

microscope. Due to the large D and W (D = W = 15 µm), the device was not able to detect the 

oscillation frequency of the L1-L2 stage worms. Error bars represent standard deviations of 

the mean oscillation frequency (a) and moving speed (b), respectively, from 12 worms. 

To demonstrate further the workability of the present device, a drug resistance 

screening experiment was conducted by using the device with D = W = 15 µm and operating 

at fsc = 174 Hz. In this experiment, the microfluidic chamber of the device was pre-filled by 

the anthelmintic levamisole with specific concentrations. The L3-stage wild-type N2 and 

mutant lev-8 C.elegans was respectively introduced into the chamber. Similarly, to verify the 

dose responses obtained by the MEF grids, the optical imaging-based locomotion tracking 

experiment was conducted in a Petri dish containing the same levamisole concentration 

solution. It is noted that even as the concentration of levamisole solution increased to a 
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considerably high value of 500 µM, the electrical resistivity of the worm and levamisole 

solution was little changed. Thus, we still used (∆R / R)th = 8.1 % to distinguish the 

presence/absence of the worm’s body part in a detection unit.  

Fig. 3.10 displays the responses of the two different nematodes as a function of 

levamisole dose in terms of fworm and vworm. The result demonstrates that the response curves 

obtained by the present device were almost the same as those obtained by the microscope-

camera method. Specifically, at the levamisole concentrations lower than 1.0 µM for N2 and 

5.0 µM for lev-8 nematodes, little reduction in fworm or vworm was observed. Increasing 

levamisole concentration caused to restrict their movement. The cut-off concentration was 

105.4 µM for N2 and 155.3 µM for lev-8, at which almost all worms were paralyzed. The 

EC50 value (defined as the concentration that provokes a response half way between the basal 

and maximal response, of the agonist and compare for differences between isolates or strains) 

for levamisole was found to be ~20.2 µM for N2 worms, and ~38.7 µM for lev-8 worms by 

the fitting curves in Figs. 3.11c-d. Therefore, the present grids device can play a useful role 

in many phenotypic bioassays that require real-time observation of the behavioural patterns 

of some microorganisms. 
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Fig. 3.10 Oscillation frequency (a) and moving speed (b) of L3-stage wild-type N2 and 

mutant lev-8 C. elegans. Error bars represent standard deviations of the mean oscillation 

frequency (a) and moving speed (b), respectively, from 15 worms. 

There is much room to improve the performances of the MEF grids device. At the 

moment of this work, the obtained spatial detection resolution of the device was at the level 

of 30 × 30 µm2, limited by our fabrication capability. The worm tracking program was able 

to extract the behavioural parameters such as moving speed and oscillation frequency based 

on the reconstructed images obtained over time. But, due to the limited spatial resolution, it 

was relatively difficult to extract other important parameters such as nematode’s body 

amplitude. As a result, no accurate waveform of nematodes was obtained by this present 

device. Scaling down the grids will enable us to obtain higher resolution constructed worm 

images. It is interesting to address that using smaller detection units can result in a higher 
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value of (ΔR / R)th, making it easier and more accurate to detect the presence and absence of 

a worm’s body. Specifically, by manufacturing the microelectrodes with the submicron 

feature size, our locomotion behaviour detection technology could overcome the optical 

diffraction limit in conventional optical microscopy. Furthermore, due to the limited area 

coverage by a small number of microelectrodes, the current version of the MEF grids device 

allowed a single worm to move freely inside the grids. Obviously, layout of more 

microelectrodes will allow for simultaneous abd high-throughput monitoring of multiple 

worms with no body interference between worms. However, in order to incorporate a large 

number of finer (e.g., submicron feature) microelectrodes into the next version of the device 

(with an aim of achieving a higher spatial resolution and larger capacity for detecting 

multiple worms), the electronic detection system needs a faster processing speed to read out 

more electrical resistance elements in parallel. The device presented here used a multimeter, 

in conjunction with the addressing circuit, to read the electrical resistance matrix of the MEF 

grids. A large-scale resistance readout circuit specific for the grids device is under 

development. Generally, it is possible to measure the electrical resistance of a resistor on a 

~ns time scale by using integrated circuit technology. As revealed in Fig. 3.7, the whole-

frame scanning frequency of fsc ≥ 80 Hz was required to track a moving nematode. It is thus 

possible to extend the number of microelectrodes on each glass slide to be N = ~ (109 / fsc)
1/2 

= ~ 3500. For example, a scaled-up MEF grids device with spatial resolution of 5 × 5 μm2 

will cover a large detection area of 1.75 × 1.75 cm2. Moreover, thanks to the simplicity of the 

electrical measurement approach, we can further increase the detection area by using 

multiple of such MEFs in parallel. Finally, we believe it is also possible to detect nematode 
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locomotion information by finding out electrical capacitance profile of the MEF grids. The 

details of the results will be reported in another article. 

3.5 Conclusions 

In summary, we have demonstrated the MEF method of tracking the movement of 

nematode C. elegans based on the electrical resistance measurement for all grids. The 24 × 

24 orthogonal grids were realized by conventional microfabrication techniques. Each 

microelectrode was 15 µm wide and each detection unit was 30 × 30 µm2 across. We found 

that as a worm moved closer to an addressed detection unit, the electrical resistance of this 

unit increased. The presence of part of the nematode’s body at the selected detection unit 

caused a minimal electrical resistance change of ~8.1 % (vs. the simulated result of ~7.9 %), 

which was much higher than the manufacturing induced initial resistance variation of 3.3 % 

between all detection units. We designed an electronic circuit to address individual detection 

units and reading out their electrical resistance at the full-frame scanning frequency of 174 

Hz. The circuit allowed tracking the time-varying shape and position of the worms and 

analysed the locomotive parameters of the nematode (e.g., oscillation frequency and moving 

speed) with the help of the worm tracking program. We also found that the shape and 

position of the nematodes could be identified when the full-frame scanning frequency of the 

electronic circuit increased to be more than 80 times the nematode’s oscillation frequency. 

Furthermore, as the size of the detection unit increased, the spatial resolution of the 

reconstructed images decreased. In addition, we verified that no electrotaxic effect occurred 

at the worms since the electric field strength applied was set to be as low as ~1.5 V cm-1. 

Lastly, the workability of the device was demonstrated by performing a drug resistance 

screening experiment on the MEF device. The device was able to differentiate the 
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locomotion behaviours of the wild-type N2 and mutant lev-8 C. elegans in response to a wide 

dose range of levamisole. We believe that the present MEF device can give potential to 

provide a cost-effective, potentially high throughput solution to tracking the behavioural 

phenotype changes of important nematodes for different bioassays on a chip level and large 

scale analysis.  
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CHAPTER 4 

TUNABLE META-ATOM USING LIQUID METAL EMBEDDED IN STRETCHABLE 

POLYMER 

A paper published in Journal of Applied Physics 

Peng Liu, Siming Yang, Aditya Jain, Qiugu Wang, Huawei Jiang, Jiming 

Song, Thomas Koschny, Costas M. Soukoulis, and Liang Dong 
 

4.1 Abstract 

Reconfigurable metamaterials have great potential to alleviate complications involved 

in using passive metamaterials to realize emerging electromagnetic (EM) functions, such 

as dynamical filtering, sensing, and cloaking. This paper presents a new type of tunable 

meta-atoms in the X-band frequency range (8-12 GHz) toward reconfigurable metamaterials. 

The meta-atom is made of all flexible materials compliant to the surface of an interaction 

object. It uses a liquid metal-based split-ring resonator (SRR) as its core constituent 

embedded in a highly flexible elastomer. We demonstrate that simple mechanical stretching 

of the meta-atom can lead to the great flexibility in reconfiguring its resonance frequency 

continuously over more than 70% of the X-band frequency range. The presented meta-atom 

technique provides a simple approach to dynamically tune response characteristics of 

metamaterials over a broad frequency range. 

4.2 Introduction 

Flexible electronics have gained considerable attention because of their potential 

applications in artificial skins, flexible displays, wearable sensors, sustainable energy, etc. 

Many flexible electronic devices have recently been developed, such as stretchable integrated 

circuits,1-5 microfluidic antennas,6-8 three-dimensional energy devices,9 printed thin film 
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transistors,10-13 and biomimetic pressure sensors.14 On the other hand, EM metamaterials 

have been intensively studied because they possess intriguing properties unattainable with 

naturally existing materials, such as negative permittivity and permeability.15-27 SRR is a 

popular building block of many metamaterial-based resonant devices in the microwave 

regime.28-31 But, these resonant devices often have a limited bandwidth. If the response 

characteristics are dynamically tunable, these resonant devices will become more useful 

when adapting to different applications. To this end, many tunable metamaterial technologies 

have been demonstrated, based on changing unit cell’s effective circuit parameters,32-36 

constituent material properties,37-42 or geometries.43-49 Specifically, the circuit tuning method 

uses variable capacitors and switches to change individual impedances of unit cells.32-36 

Tuning of the constituent materials relies on using phase change materials or liquid crystal to 

change properties of materials that make up unit cells.37-42 The micro-electro-mechanical 

systems and microfluidics based approaches change structures and locations of unit cells 

relative to a fixed part of metamaterials.43-49 

While the existing tunable metamaterial technologies have led to significant 

improvement toward broadening dynamic tuning ranges of the EM properties of microwave 

metamaterials, there is still much room for improvement, such as simplifying resonance 

tuning mechanism, extending tuning range, and making metamaterials flexible enough to 

comply with surface irregularities on the underlying substrate. For example, a switchable 

metamaterial has recently been developed, capable of tuning its resonance frequency by 

pumping mercury into and out of SRR-shaped microchannels via a relatively complex 

microfluidic control system.41 A tunable liquid metal-based antenna has also been realized by 

injecting a liquid metal alloy into a microchannel made of a stretchable elastomer.6 This 
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device could be stretched to more than double of its original length, thus obtaining a wide 

frequency tuning range. 

In this paper we present a novel stretchable SRR-based meta-atom capable of tuning 

its EM response characteristics over a broad frequency range via simple mechanical 

stretching. The presented meta-atom uses a liquid metal as the resonator material. The liquid 

metal is patterned to be a SRR structure and embedded inside a highly stretchable silicone 

elastomer. Due to its liquid nature, the SRR can flow in response to applied strains, and thus, 

is not prone to fatigue or cracking. When the encasing elastomer is stretched and twisted, the 

SRR will be sufficiently compliant to yield all necessary deformation. Therefore, by 

changing the shape of the SRR via mechanical stretching, the split gap capacitance and the 

inductance of the SRR can be adjusted, thus tuning the resonance response of the meta-atom. 

4.3 Design and Fabrication 

To test the concept of mechanically tunable meta-atom, we designed a liquid metal 

SRR to operate in the X-band frequency range (Fig. 4.1). While many types of liquid metal 

may be used, the SRR in this study employed eutectic gallium-indium or EGaIn (75.5% 

gallium and 24.5% indium; a liquid at room temperature and a solid at 14 oC) because of its 

favorable attributes, such as high electrical conductivity, low toxicity, and light weight. The 

liquid metal SRR had the inner radius of a = 1.5 mm, the outer radius of b = 2.0 mm, the 

thickness of h = 0.5 mm, and the gap distance of g = 1.0 mm. The SRR was encased by 

Ecoflex, a highly stretchable silicone elastomer with the maximal elongation at break of 

900%. It’s noteworthy that Ecoflex is thermally curable and suitable for replica molding from 

a master mold, just like polydimethylsiloxane, a commonly used elastomer used in soft 
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lithography. The length, width, and thickness of the Ecoflex encasing membrane were l = 

11.0 mm, d = 7.5 mm, and t = 1.45 mm, respectively.  

 

Fig. 4.1. Simulated magnitude of the electric field (E) distributions in the tunable liquid metal 

SRR at the resonance frequency of 9.214 GHz when not stretched (a), at 9.214 GHz when 

stretched by 30% along the y direction (b), and at a new resonance frequency of 8.782 GHz 

at the stretched state (c) . 

The resonant response of a SRR can be equivalently regarded as a LC resonator with 

a resonance frequency of fo = 1/(2𝜋√𝐿𝐶), where the inductance L results from the current 

path of the SRR, and the capacitance C is determined by the split gap and the dielectric 

properties of the substrate along with the material that fills the gap. In this study, when the 

SRR was stretched, both of the capacitance and inductance would change, thus shifting the 

resonance frequency. To illustrate the influence of mechanical stretching on the resonance of 

the SRR, we conducted EM simulations using the Ansys High Frequency Structure Simulator 

(HFSS) software. As shown in Fig. 4.1, the SRR was fixed in the x-y plane inside a 

waveguide and the magnetic field (H) was parallel to the z direction and penetrated through 

the SRR, thus exciting the magnetic resonance. When the split gap of the SRR was aligned 

along the y direction, the resonance frequency before stretch was at 9.214 GHz (Fig. 4.1a). 

Applying the stretch of 30% along the y direction led to an increase in the split gap along the 

same direction (Fig. 4.1b). As a result, the SRR was brought out of resonance at 9.214 GHz 

and resonated at a new frequency of 8.782 GHz (Fig. 4.1c). We note that the simulation here 
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only conceptually illustrated the proposed tuning mechanism. The more quantitative 

simulation results are presented and discussed later, together with the experimental results. 

 

Fig. 4.2. Fabrication process for the tunable liquid metal SRR. 

Fig.4.2 shows the fabrication process flow for the tunable meta-atom. First, to form 

the SRR-shaped microchannels, an 800-µm-thick Ecoflex layer L1 was cast upon a master 

mold made of SU-8 photoresist on a silicon (Si) wafer W1, and then, was fully cured at 60 oC 

on a hotplate for 30 mins (Fig. 4.2a,b). In a parallel process, a 100-µm-thick Ecoflex thin 

layer L2 was spin-coated on another Si wafer W2, followed by partial curing at 50 oC on a 

hotplate for 40 s (Fig. 4.2c). Subsequently, the layer L1 was peeled off from the master mold 

and adhered to the partially cured layer L2. The two layers L1 and L2 were then permanently 

and thermally bonded together on a hotplate at 90 oC for 30 mins (Fig. 4.2d). After the two 

bonded layers were peeled off from the wafer W2, the liquid metal EGaIn was injected into 

the embedded microchannels through two 100-µm-diameter holes mechanically punched at 
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the two ends of each microchannel. There were some residues of the eutectic alloy remaining 

around the holes on the top surface of the Ecoflex structure. To clean the top surface, a cotton 

swab was dipped in a solution of hydrochloric acid (50%, v/v) and then carefully wiped off 

any residues from the top surface (Fig. 4.2e). To encapsulate the liquid metal inside the 

Ecoflex elastomer, a new Ecoflex prepolymer solution was poured onto the cleaned top 

surface, followed by a full curing process performed at 80 oC on a hotplate for 30 mins (Fig. 

4.2f,g). Therefore, the liquid metal SRRs were formed inside the elastomer. The total 

thickness of the elastomer was 1.45 mm as mentioned. The SRRs were located nearly at half 

the thickness of the elastomer. Lastly, individual SRRs were diced out of the whole elastomer 

for testing. 

4.4 EM Measurement Configurations 

After the meta-atom was formed, we carried out the EM measurements over the X-

band using a WR90 rectangular waveguide (22.86 × 10.16 mm) terminated by a UG39/U 

cover flange. When the waves propagated in the waveguide, the directions of E and H were 

along the short edge and the long edge of the waveguide, respectively. The walls of the 

waveguide acted as reflective mirrors and made the SRR cell behave as an element in a 2D 

quasi-periodic structure with normal incidence wave. The SRR sample was attached onto a 

wood slab (low-loss microwave substrate material) and centered in the middle of the 

waveguide. Multiple cotton wires were inserted through the holes prepunched at the opposite 

ends of the Exoflex elastomer. The elastomer was then stretched to a specified strain level 

(17%, 28%, 53%, or 72%). To hold the sample in place, the cotton wires passed through the 

holes predrilled in the wood slab and then rolled and tied on the wood posts at the backside 

of the slab. The spectra were measured using a programmable vector network analyzer 
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(Agilent E8364). A full 2-port calibration was performed to set an accurate reference plane 

before the measurement.  

There were six possible arrangements for the SRR inside the waveguide, as illustrated 

in Fig. 4.3. But only three of them (Fig. 4.3a,c,d) were able to excite the resonance of the 

circular ring current in the SRR (magnetic dipole resonance). Fig. 4.3a displays that the 

incident wave was normal to the plane of the ring and the E field was parallel to the gap 

direction. The electric dipole formed across the split gap allowed coupling of the E field of 

the waveguide mode to the magnetic dipole resonance of the SRR because of the broken 

symmetry of the ring with respect to the E-field direction. In the case shown in Fig. 4.3c, 

both the electric moment across the gap driven by the incident E field and the magnetic 

moment of the circular ring induced by the incident H field current jointly excite the 

resonance of the ring. Fig. 4.3d shows that the H field is normal to the plane of the ring, 

which induces the circulating current in the ring and generate magnetic moment. Neither 

electric nor magnetic dipole moment could couple to the incident waveguide mode in the 

other three configurations shown in Fig. 4.3b,e,f.  
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Fig. 4.3. Six possible configurations of the SRR inside a testing waveguide. The inset in (a) 

shows the relative location of the ring to the waveguide. The electric dipole formed by 

opposite electric charges accumulating across the gap of the ring couples the SRR resonance 

to the E field of the incident waveguide mode in (a) and (c). The magnetic dipole moment 

due to the loop current couples to the incident H field normal to the ring plane in (c) and (d). 

No coupling to the resonance was found in (b), (e), and (f) in X-band.  

4.5 Results and Discussion 

In the first measurement configuration (Fig. 4.3a), the SRR was stretched along the 

H-field direction with different stretch ratios. The E field was formed across the split gap to 

excite the electric resonance that corresponded to a transmission dip at the resonance 

frequency in the transmittance spectrum (see Appendix Fig. S1 for the reflectance spectrum). 

The experimental result in Fig. 4.4a shows that by stretching the SRR, the resonance was 

progressively tuned to the lower frequencies. For the stretch ratio of 17%, 28%, 53%, and 

72%, the resonance frequency red shifted from 10.54 GHz to 9.78 GHz, 9.05 GHz, 8.52 GHz, 

and 7.67 GHz, respectively. The deformation of the SRR under different stretch levels was 

observed consistent with the simulated deformation using the finite element method analysis 

(FEA) with the COMSOL Multiphysics (Fig. 4.4b). The embedded liquid metal was also 
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found to remain continuous while being compliant to the changing shape of the surrounding 

elastomer.  

We modeled the SRR and conducted simulations for its resonance response to 

different stretching magnitudes using the full-wave 3D EM simulation tool in the CST Studio. 

The structural parameters of the deformed SRR were extracted from the images of the SRR. 

In this simulation, the SRR was placed in a rectangular waveguide with four metal walls, the 

same as the experimental measurement setup. The simulated transmittance spectra of the 

SRR were presented with dashed lines along with the experimental result in Fig. 4.4a.  

 

Fig. 4.4. (a) Measured and simulated transmittance spectra of the tunable liquid metal SRR 

meta-atom at different stretching ratios of 0, 17%, 28%, 53%, and 72%, when the meta-atom 

was placed inside the waveguide as shown in the inset. Also, refer to Fig. 4.3a for the 

measurement arrangement. The conductivity of liquid metal was 3.46×106 S/m. The 

dielectric constant and loss tangent of Ecoflex silicone rubber was 2.5 and 0.01, respectively. 

The SRR was placed on a wood substrate with the dielectric constant of 1.22 and the loss 

tangent of 0.1. (b) Experimental (left) and corresponding simulated (right) results for the 

stretch-induced mechanical deformations of the tunable meta-atom.  
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In the second measurement configuration (Fig. 4.3c), the resonance was excited by 

both of the E and H fields.  At the stretch level of 17%, 28%, 53%, and 72%, the resonance 

frequency was observed to red shift from 10.21 GHz to 9.58 GHz, 9.37 GHz, 8.58 GHz, and 

7.37 GHz, respectively (Fig. 4.5a). In the third measurement configuration (Fig. 4.3d), the 

resonance was induced by the circulating current in the ring caused by the H field. The 

measurement result shows that at the stretch level of 17%, 28%, 53%, and 72%, the 

resonance frequency also red shifted from 9.58 GHz to 9.24 GHz, 8.79 GHz, 8.32 GHz, and 

7.32 GHz, respectively (Fig. 4.6a). Similarly, Fig. 4.5b and 4.6b shows the experimental and 

simulated geometric changes of the SRR at different stretching levels in the second and third 

configurations, respectively (see Appendix Fig. S2 and S3 for the reflectance spectrum of the 

second and the third measurement configurations, respectively). 



www.manaraa.com

95 

 

 

Fig. 4.5. (a) Measured and simulated transmittance spectra of the tunable liquid metal SRR 

meta-atom at different stretching ratios of 0, 17%, 28%, 53%, and 72%, when the meta-atom 

was placed inside the waveguide as shown in the inset. Also, refer to Fig. 4.3c for the 

measurement arrangement. (b) Experimental (upper) and corresponding simulated (lower 

panel) results for the stretch-induced mechanical deformations of the tunable meta-atom.  
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Fig. 4.6. (a) Measured and simulated transmittance spectra of the tunable liquid metal SRR 

meta-atom at different stretching ratios of 0, 17%, 28%, 53%, and 72%, when the meta-atom 

was placed inside the waveguide as shown in the inset. Also, refer to Fig. 4.3d for the 

measurement arrangement. (b) Experimental (upper) and corresponding simulated (lower 

panel) results for the stretch-induced mechanical deformations of the tunable meta-atom.  

For all three of the aforementioned configurations, the experimental EM 

measurement results show good agreement with the simulated results. The slight discrepancy 

between the simulated and testing results is presumably attributed to the limited accuracy of 

the EM modeling. Here, the modeling accuracy mainly depends on the geometric parameters 

extracted from the images of the deformed SRRs and Ecoflex elastomer (Fig. 4.4b, 4.5b, and 
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4.6b), and the material parameters (e.g., dielectric constant and tangent loss of the wood slab 

and Ecoflex) used in the simulation. Also, the convergent criterion for the simulation affects 

the results. To achieve a balance between accuracy and efficiency, we set the convergent 

criterion to 0.01. As demonstrated, when the same stretch of 72% was applied to the SRR in 

all the three measurement configurations, the resonance frequency of the SRR were tuned by 

a net shift of 2.87 GHz (Fig. 4.4a), 2.83 GHz (Fig. 4.5a), and 2.26 GHz (Fig. 4.6a), or a 

relative shift of 27.2%, 27.8%, and 23.5%, with respect to the original resonance frequency 

of 10.54 GHz, 10.20 GHz, and 9.58 GHz, respectively. Fig. 4.7 summarizes the relationships 

between the stretch ratio and the resulting resonance frequency shift.  

 

Fig. 4.7. Resonance frequency as a function of the stretch ratio for the tunable meta-atom in 

the three measurement configurations shown in Fig. 4.4-4.6. 

Although the obtained experimental and CST-based simulation results have 

demonstrated the ability to tune the resonance frequency of the SRR via mechanical 

stretching, it is worthwhile to further understand how the equivalent capacitance and 

inductance of the SRR were influenced by their geometric deformation. The equivalent 

capacitance is dominated by the split gap capacitance 𝐶𝑔𝑎𝑝 which is a function of the gap 
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geometry (see Equation A.1 in the Appendix for the closed-form equation). The equivalent 

inductance consists of self-inductance of the conducting loop and the mutual inductance 

induced by the boundary conditions of a given waveguide that are imposed on the SRR for 

certain orientations (quasi-periodic structure). The self-inductance of an unstretched circular 

loop 𝐿0 and a stretched elliptical loop 𝐿𝑒  are geometrically dependent (see Equation A.2 and 

A.3 in Appendix for the closed-form equation). The mutual inductance depends on not only 

the self-inductance but the SRR orientations with different mirror effects imposed by the 

waveguide. We note that in the previous experiments the resonance modes of the SRR were 

excited inside a waveguide where mutual interactions with the inner walls of the waveguide 

existed. But, to simplify the simulation while still illustrating a changing trend of resonance 

frequency shift, the effect of the mutual interaction into the free-space simulation was 

excluded, because compared with the effect from the mutual interaction with the walls, the 

geometric deformation of the SRR could be considered to contribute most to the resonance 

frequency change. Therefore, we performed EM simulations for a single SRR using HFSS in 

the free space. Specifically, a delta-gap source was set along the gap direction to excite the 

unit cell (Fig. 4.8a) and the impedance was monitored while sweeping the frequency. To 

describe the resonance behavior of the stretching SRR, we designed a one-port equivalent 

circuit taking into account the equivalent inductance L and capacitance C, the dielectric loss 

Rd from the substrate, and the metallic loss Rm from the liquid metal (Fig. 4.8b). The lumped 

L and C were obtained by optimizing the impedance of the equivalent circuit based on the 

simulated impedance around the resonant frequency with less than 3% of relative error for 

each stretching case.  
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Fig. 4.8. (a) Schematic of the tunable SRR in the free space. A delta-gap source was set along 

the split gap. (b) Equivalent circuit of the SRR shown in (a). (c) Simulated capacitance and 

inductance as a function of the stretch ratio when the SRR was stretched perpendicular to the 

split gap direction. (d) Simulated capacitance and inductance as a function of the stretch ratio 

when the SRR was stretched along the gap direction.  

The simulation results (Fig. 4.8c,d) show that as the unit cell was stretched 

perpendicular to (the first and the second configurations in Fig. 4.4, 4.5) or along (the third 

configuration in Fig. 4.6) the gap direction, the equivalent capacitance and inductance 

increased with increasing the stretch ratio. Since the mechanical stretching in any one of the 

configurations increased the perimeter of the SRR loop, it is obvious that the inductance 

would increase with stretching. As for the capacitance, in the first and the second 

configurations, the stretching caused to decrease the distance between the two arms of the 

SRR, and also caused to increase the effective metal area that allowed holding more charges. 

Therefore, the equivalent capacitance of the SRR in these two configurations was increased 

as increasing the stretch ratio. In the third configuration, despite that the distance between the 
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arms was increased, the stretching also increased the area of liquid metal in the arms region 

near the split. By further considering the fringing effect, the ability of the SRR to store 

charges was actually enhanced, thus increasing the equivalent capacitance as well. The 

simulation result also indicates that the perpendicular stretching (Fig. 4.8d) was more 

effective than the parallel stretching (Fig. 4.8c). This is because when the SRR was stretched 

in the perpendicular direction, the gap distance rapidly decreased to make the delta-gap 

source more effective.       

The present meta-atom exhibited good repeatability in the resonance modulation, as 

demonstrated with 500 stretching response tests. During each test, the meta-atom was 

stretched to a same strain level outside the waveguide and then placed back into the 

waveguide for EM measurement. We note that further elongation of the SRR beyond 72% 

would move the resonance frequency to below the cutoff frequency of the waveguide used in 

this study. Nevertheless, even with the applied moderate stretch amplitude, this tunable meta-

atom method provided a considerable frequency tuning range covering 71.75% (2.87 GHz 

divided by 4.0 GHz) of the whole X-band frequency range (8.0 – 12.0 GHz). Furthermore, by 

changing its overall size and geometric parameters of the SRR, the original resonance 

frequency of the SRR can be set to be at the upper limit of the X-band frequency range. By 

doing that, tuning in the whole X-band frequency range may be achieved with sufficient 

stretching. Our experiments showed that the present SRR could be stretched by more than 

twice (> 200%) the original size in any directions, while keeping the embedded liquid metal 

structure continuous, flexible, and recoverable, without breaking of the encasing polymer 

layer or occurring of structural hysteresis.  
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4.6 Conclusion  

A liquid metal SRR-based tunable meta-atom was demonstrated in the X-band 

frequency range. The meta-atom consisted of a liquid metal resonator encased by a flexible 

elastomer skin.  By stretching the meta-atom, the resonance frequency of the meta-atom was 

tuned continuously over more than 70% of the whole X-band frequency range. The meta-

atom in this study presents a simple but effective building block for realizing mechanically 

tunable metamaterials. Also, since the constituent materials of the present meta-atom are 

relatively ecofriendly, reusable and durable, the metamaterials made of such meta-atoms 

potentially will find many applications in wearable EM coatings and devices.  
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CHAPTER 5 

FROM FLEXIBLE META-ATOM TO METAMATERIAL: A WEARABLE 

MICROWAVE META-SKIN WITH TUNABLE FREQUENCY SELECTIVE AND 

CLOAKING EFFECTS 

A paper published in Scientific Reports 

 

Siming Yang,# Peng Liu,# Mingda Yang, Qiugu Wang, Jiming Song, and Liang Dong 
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5.1 Abstract 

This paper reports a flexible metamaterial-based “skin” or meta-skin with tunable 

frequency selective and cloaking effects in microwave frequency regime. The meta-skin is 

composed of an array of liquid metallic split ring resonators (SRRs) embedded in a 

stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency 

selective surface with a wide resonance frequency tuning range. When wrapped around a 

curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to 

significantly suppress scattering from the surface of the dielectric material along different 

directions. We studied frequency responses of multilayer meta-skins to stretching in a planar 

direction and to changing the spacing between neighboring layers in vertical direction. We 

also investigated scattering suppression effect of the meta-skin coated on a finite-length 

dielectric rod in free space. This meta-skin technology will benefit many electromagnetic 

applications, such as frequency tuning, shielding, and scattering suppression. 

5.2 Introduction 

Metamaterials have attracted considerable attention due to their inaccessible 

electromagnetic (EM) properties that can be hardly found in natural materials. The unique 



www.manaraa.com

107 

 

properties of negative permittivity, negative refractive index, and index close to zero1-12, 

allow metamaterials to be employed in many emerging applications such as sub-wavelength 

resolution imaging13,14, filtering15, and cloaking16-19. Compared to conventional microwave 

filters, metamaterial-based counterparts have demonstrated the potential to obtain compact 

sub-wavelength size and left-handed behaviors. Different kinds of sub-wavelength resonators 

have been researched to achieve selective frequency responses. Among them, split ring 

resonator (SRR) is a widely proposed magnetic resonant structure20,21. While numerous 

research efforts have been made to push the operating wavelength of the SRR-based filters 

from the microwave to the visible region, the significance of the microwave filters would be 

tremendously increased if their response characteristics can be dynamically tuned. Therefore, 

a variety of frequency tuning mechanisms have been reported. Methods include changing 

unit cell’s effective parameter by varying conductance or inductance22-24, configuring 

constituent material by using phase changeable material as the constituent material25-27, and 

altering geometry through distorting the structure or tilting the conducting elements28-30. 

Recently, inclusion of liquid metal as active components has opened up new ways to 

realize flexible electronics. By injecting liquid metal into a template, the metal can take on a 

specific shape to form stretchable electronic devices, such as electrical interconnectors31, 

electrical probes32, antennas33-35, microelectrodes in microfluidic devices36, switchable 

metamaterial microfluidic platforms25, and artificial skin sensors37. We previously developed 

a stretchable single meta-atom in microwave regime, where eutectic gallium-indium (EGaIn: 

75.5 % gallium and 24.5 % indium), a liquid metal at room temperature, was patterned as the 

SRR structure and embedded inside a stretchable silicone elastomer. As the shape of the 
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liquid SRR was changed via mechanical stretching, the split gap capacitance and the 

inductance of the resonator were adjusted30. 

In this paper we report a flexible microwave meta-skin and its frequency selective 

and cloaking effects. The meta-skin consists of an array of liquid metal SRR meta-atoms 

encased inside an elastomer. We demonstrate that by stretching multiple layers of the meta-

skins along their surfaces in a planar direction and by changing the spacing between the 

meta-skin layers in a vertical direction, the meta-skins can perform as a high performance 

tunable frequency selective surface with a broad tuning range. Furthermore, the meta-skin is 

able to wrap an interaction object with any arbitrary shapes. We demonstrate that by 

wrapping it on a dielectric cylindrical rod, a significant scattering suppression or “cloaking” 

effect is observed. The scattered field from the dielectric rod at different angles is suppressed 

in a designed frequency region. Therefore, this meta-skin technology is different from 

traditional stealth technologies that often only reduce the backscattering, i.e., the power 

reflected back to a probing radar38. 

5.3 Design and Fabrication 

Fig. 5.1a shows the structure of the proposed SRR array operated in X-Band regime. 

The device has the inner radius of a = 2.0 mm, the outer radius of b = 2.5 mm, the thickness 

of h = 0.5 mm, the gap of g = 1.0 mm, and the lattice constant of p = 7.5 mm. The SRR array 

is made of EGaIn and encased by a silicone elastomer (Ecoflex). The thickness of the 

Ecoflex is d = 1.45 mm. We conducted EM simulations to estimate a resonance frequency of 

the array using Ansys High Frequency Structure Simulator (HFSS) software. As shown in 

Fig. 5.1a, the SRR array is fixed in the x-y plane, and the magnetic field (H) is parallel to the 

z direction and penetrates through the SRRs, thus exciting a magnetic resonance. With the 
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aforementioned geometrical parameters, the simulated resonance frequency for the SRR 

array is 9.84 GHz. The surface current distribution at the resonance frequency is shown in 

Fig. 5.1a. By stretching the meta-skins (Fig. 5.1b), the lattice constant, the shape of the 

SRRs, and the mutual interaction between the resonators will be modulated. Accordingly, the 

resonance frequency of the meta-skins will be shifted. 

 

Fig. 5.1: (a) Geometry and simulated surface current distribution of the meta-skin. (b) Photos 

of the unstretched and stretched meta-skin. Scale bars represent 5 mm. (c) A photo of a 30.48 

cm long, 3.175 cm diameter dielectric nylon rod wrapped by the meta-skin. (d) Flexibility 

demonstration with a glass flasks wearing the meta-skin. 

We manufactured the proposed meta-skin with 225 identical SRR meta-atoms 

arranged in 15 columns and 15 rows. Fig. 5.2 shows the fabrication process flow. First, an 

aluminum master mold with the area of 14 cm × 14 cm was manufactured by using a high 

precision CNC milling machine. Subsequently, an Ecoflex layer L1 with the thickness of 800 

µm was cast upon the master mold and then was fully cured on a hotplate at 60 oC for 30 

mins. Simultaneously, another Ecoflex layer L2 was spin-coated on a 3 mm-thick 

poly(methyl methacrylate) or PMMA plate pretreated with a silane coupling agent. The spin-

coated L2 was only partially cured at 50 oC for 1 min. After that, L1 was peeled off from the 



www.manaraa.com

110 

 

master mold and then was adhered to L2, followed by baking on the hotplate at 150 oC for 1 

min. Thus, the SRR-shaped channels were formed in the elastomer. To inject liquid metal 

into the channels, an inlet and an outlet were mechanically punched at the two ends of each 

channel. After the liquid metal was manually injected into the channels by using a syringe 

(10 mL, Becton-Dickinson) with a needle (20 Gauge), the liquid metal residues were cleaned 

by a cotton swab dipped with a solution of hydrochloric acid (50%, v/v). Lastly, the whole 

device was immersed in a prepolymer solution of Ecoflex and then was fully cured at 80 oC 

for 30 mins. The total thickness of the Ecoflex elastomer was 1.45 mm. The SRRs were 

located in nearly half the thickness of the elastomer. 

 

Fig. 5.2: Fabrication process flow for the meta-skin. 
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5.4 Results and Discussion 

EM measurements were conducted in free space. Six of the meta-skins were stacked 

with the initial spacing d = 3 mm between neighboring meta-skins. A programmable vector 

network analyzer (VNA, Agilent E8364) was used to measure spectral responses of the 

sample. To generate a quasi-plane wave illumination, the meta-skins were placed between 

two horn antennas (one as a transmitter and the other as a receiver) within the far field 

regions. As the meta-skins were located in the electric field E-plane of the antenna, the 

magnetic field H could be coupled to the magnetic resonance from the current loop in the 

SRR (see inset of Fig.5.3).  

Due to the stretchable feature of the meta-skin, the dimensions of the SRRs can be 

altered through stretching along different directions. Our previous research showed that the 

stretch-induced dimensional changes of the SRR can influence the equivalent inductance and 

capacitance of the SRR, thus shifting its resonance frequency30. In the present work, as the 

multilayers of the meta-skins were stretched along the wave propagation (k) direction with 

the stretch ratio of 0%, 15.9%, 29.7%, 36.4%, and 50%, the resonances of the meta-skins 

were observed at 9.84 GHz, 9.76 GHz, 9.47 GHz, 9.27 GHz, and 9.15 GHz, respectively. 

The measurement results are shown in Fig. 5.3 with dashed lines. To verify the measured 

results, an HFSS-based full wave EM simulation was carried out by applying the periodic 

boundary condition on the SRR units. The simulation results with different stretch ratios are 

shown in Fig. 5.3 with solid lines. The simulated and experimental results achieved a good 

agreement in the trend of shifting resonance frequency. The minor difference in the 

resonance frequency and bandwidth may be attributed to the accuracy of the model.  
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Fig. 5.3: Simulated and experimental transmittance spectra of the tunable 6-layer meta-skins. 

In this experiment the spacing between the neighboring layers is d = 3 mm. Inset shows a 

schematic for the setup.  

By changing the spacing d between two neighboring layers, the resonance of the 6-

layer meta-skins could also be tuned. Here, the spacing was defined by inserting foams 

(relative permittivity close to one). Fig. 5.4a and b shows the spectral responses of the meta-

skins to different stretching levels for the spacing of d1=13 mm and d2=17 mm, respectively. 

As the meta-skins moved farther away from each other, the mutual inductance between the 

resonators in the neighboring layers reduced39. Consequently, an increase in resonance 

frequency of the meta-skins is expected. Indeed, for the unstretched sample, the resonance 

frequency was shifted from 9.84 GHz to 11.9 GHz as the vertical spacing increased from 3 

mm to 13 mm. As we further increased d to 17 mm, the resonance frequency was shifted to 

12.4 GHz. Similarly, by stretching the multilayer metal-skins along their surfaces in the 

horizontal direction, the resonance frequency was also observed to move towards lower 

frequencies. Therefore, by varying the spacing between the meta-skins in the vertical 

direction and stretching the metal-skins in a planar direction, the resonance frequency tuning 

range of the meta-skins can be largely broadened.  
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Fig. 5.4: Experimental transmittance spectra of the tunable 6-layer meta-skins as a function 

of mechanical stretch ratio for two different spacing between neighboring layers: d1 = 13 mm 

(a) and d2 = 17 mm (b). 

The fully flexible nature of the meta-skin makes it possible to wrap on an interaction 

object with any arbitrary shapes. Here, we used a single layer of meta-skin to wrap on a 

30.48 cm long, 3.175 cm diameter dielectric nylon rod (dielectric constant: 𝜀𝑟 = 3.8). We 

investigated how this wrapping material could influence the scattered field from the rod. The 

far-field measurement was thus conducted to measure scattering strength from a bare nylon 

rod, a nylon rod wrapped by a pure Ecoflex sheet, and a nylon rod wrapped by the meta-skin. 

In the measurement setup (Fig. 5.5), the sample hangs from a cotton thread at a designated 

origin to minimize unwanted scattering signals from the support constructs. The two horn 

antennas were placed at an equal distance of L = 80 cm from the sample. This ensured that 

the object was in the far-field region (according to the far-field condition 2D2 / λ, where 𝐷 = 

9.8 cm is the diagonal of the horn antenna and λ = 3 cm is estimated from the center 

operating frequency). The transmitter antenna was fixed during the measurement, while the 

receiver antenna was moved around the sample to receive scattering signals from different 

angles θ with respect to the transmitter. The two horn antennas were inset into the EM 

absorbing material to minimize the scattering from the background. The aforementioned 
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VNA was used to measure scattering parameters between the two antennas. The objective 

azimuthal bistatic measurements were conducted to obtain the s-parameter for further data 

processing.  

 

Fig.5.5: Experimental setup for measuring scattering from the meta-skin wrapped nylon rod 

(inset). 

The scattered field was obtained by subtracting the incidence field (𝑆21_𝑖) from the 

total field (𝑆21_𝑡). This operation can not only derive the field scattered from the sample, but 

minimize clutters from background in the experiment. Two consecutive measurements were 

conducted. First, the sample was placed in the designated position and 𝑆21_𝑡 was measured. 

Then, the sample was removed and 𝑆21_𝑖 was recorded. The original scattering parameter for 

the scattered field can be expressed as 𝑆21_𝑜(𝑆(𝜔)) = 𝑆21_𝑡 − 𝑆21_𝑖. It should be noted 

that because the real testing environment was complicated, the 𝑆(𝜔) derived from 

subtracting the incidence field from the total field may not entirely remove the clutter 

component from the objective signal. As shown in Fig. 5.6a, the spectral response of 

𝑆(𝜔) (solid blue line) contains complex stray signal. To efficiently remove the clutters, we 

applied fast Fourier transform for the post processing, where a Gaussian window function 

(𝐺(𝜔)) was adopted due to its high resolution in time domain. By multiplying 𝐺(𝜔) by 𝑆(𝜔), 

a new signal in frequency domain was generated, denoted as 𝐻(𝜔). To reveal the signal 
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response in the time domain, an inverse fast Fourier transform (ifft(·)) was implemented over 

𝐻(𝜔) to generate ℎ(𝑡). Further, ℎ(𝑡) was multiplied by a designated rectangular window 

function 𝑤(𝑡). In time domain, the signals from clutters were late arrived. Applying the 

rectangular window function in time domain allows filtering out the scattering from the 

clutters. The gated time domain signal is shown in Fig. 5.6b. Finally, the fast Fourier 

transform (fft(·)) was implemented over this processed time domain signal (𝑤(𝑡) · ℎ(𝑡)), 

yielding 𝐺(𝜔) · 𝑆′(𝜔), where 𝑆′(𝜔) solely represents the interaction with the sample in the 

frequency domain. This entire process can be expressed  

𝐻(𝜔) = 𝐺(𝜔) · 𝑆(𝜔)                                              (5.1.a) 

ℎ(𝑡) = ifft(𝐻(𝜔))                                                   (5.1.b) 

𝑆′(𝜔) = fft(𝑤(𝑡) · ℎ(𝑡))/𝐺(𝜔)                              (5.1.c) 

Using Equation 5.1, we obtained the scattered field from the aforementioned three different 

samples. The processed scattered field for the sample covered by the meta-skin is shown in 

Fig. 5.6(a) with red solid line. Compared to 𝑆(𝜔), 𝑆′(𝜔) becomes smooth after the removal 

of the clutter from 𝑆(𝜔), while the scattering information still is contained.  

 

Fig. 5.6. (a) Raw and processed scattering gain for the meta-skin coated nylon rod at the 

angle of θ = 90o. (b) Gated time domain signal. 
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The post-processed scattering gains for the meta-skin covered, the polymer covered, 

and the uncovered rods are presented in Fig. 5.7a-e. The results show that the scattering gain 

from the meta-skin covered rod was significantly reduced in the frequency band from 8 GHz 

to 10 GHz at five different measurement angles θ = 37.5o, 45o, 60o, 90o, and 105o. 

Specifically, compared with the uncovered case, at θ = 37.5o the meta-skin was able to 

suppress the scattering gain in over 33% of frequency band between 8-10 GHz. At other 

angles the suppression effect of the meta-skin is more significant and the scattering grain was 

suppressed in over 70% of the same frequency range. The largest suppression of 20 dB was 

found at around 9 GHz at 37.5o.  The overall scattering suppression effect of the meta-skin is 

illustrated by averaging the scattering gain with different angles (Fig. 5.7f). It is observed 

that the meta-skin was able to suppress the scattering gain by about 75% in the band of 8-10 

GHz. The scattering suppression is mainly attributed to the cloaking effect of the embedded 

SRRs around the designed frequency, where the destructive interference between the 

resonance of the SRRs and the scattering from the dielectric rod occurred. We also noted that 

the scattering gain spectra of the meta-skin wrap in Fig. 5.7 do not have exactly the same 

resonance frequency as the transmittance spectra of the multilayer meta-skins in the 

unstretched state in Fig. 5.3. The factors below may be attributed to this observation: first, 

the scattering suppression gain was measured at different angles, which actually is angle-

dependent due to different phases of multiple reflections and interactions over the interfaces; 

second, only one layer of the meta-skin was coated on the surface of the nylon rod with the 

dielectric constant of 3.8, while multiple layers of the meta-skins were used in the frequency 

selective surface application and spaced by foam with the dielectric constant of close to one.  
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Fig. 5.7. Measured scattering gain for the bare dielectric rod (green - uncovered), the rod 

wrapped with the Ecoflex polymer (red - polymer), and the rod wrapped with the metal-skin 

(blue – meta-skin) at the angles of θ = 37.5o (a), 45o (b), 60o (c), 90o (d), and 105o (e). The 

average scattering gain over the different angles is given in (f). 
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The whole meta-skin remained fully functional without fatigue or cracking after 

repeated measurements. This is because the liquid metal SRRs can flow and reshape 

responding to applied strains. Besides the single circular SRR, many other magnetic 

resonance structures may be used in the meta-skin setting to realize frequency selection and 

scattering suppression40. Furthermore, in addition to the magnetic resonators, liquid metal-

based electric resonant structures, such as wires, can be integrated into the same elastomer. 

This will make it possible to achieve negative index for cloaking applications. Moreover, 

other different stretchable and flexible dielectric host media could be used to embed these 

liquid metal-based resonant structures. This will provide us with more flexibility to control 

loss tangent of the meta-skin. In the microwave frequency regime the dielectric losses are 

dominant and different substrate dielectric materials can affect the loss tangent. For higher 

frequencies, such as terahertz, as the ohmic losses become significant, other types of liquid 

metal or conducting materials are required to form the resonating units.  

5.5 Conclusions 

A flexible and wearable microwave meta-skin was developed by embedding an array 

of liquid metal SRRs into a highly flexible elastomer. We demonstrated the strong ability of 

the meta-skin to tune the resonance of the frequency selective surface and to suppress the 

scattering from the curved surface of a dielectric material along different directions. By 

combining the planar stretching and the vertical spacing, the resonance frequency of the 

multilayer meta-skins was tuned from 9.15 GHz to 12.38 GHz. By wrapping a finite-length 

dielectric rod with the meta-skin, the scattering from the surface of the rod was suppressed by 

about 75% in 8-10 GHz. It is believed that the present meta-skin technology will find many 

applications in EM frequency tuning, shielding, and scattering suppression.  
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CHAPTER 6 

CONCLUSION AND FUTURE ASPECTS 

 

6.1 Summary and Conclusion 

In this dissertation, the background of microfluidic platform technology is introduced. 

The advantages of integrating microfluidic platform technologies with multiple technologies, 

especially electronics and optics, are discussed.  The ideas behind two important fused 

technology, optofluidic and electrofluidic are illustrated. Further, a comprehensive literature 

review of current cutting-edge trends about these two technologies is illustrated in Chapter 1. 

Each technology is divided to two categories depending upon the direction of fusion. Many 

inspiring pioneer work are presented with their applications and integration advantages. As a 

result, challenges and opportunities are discovered. While for different applications, different 

approaches may be adopted even for solving the same problem. Thus we dedicated ourselves 

to application-orientated technique polishing and improvement.  For different applications, 

we will consider cons and pros for each integrated technology and make the right choice in 

order to make the full use of those chosen technologies.  

The first application we studied is measuring muscular force of microscopic 

nematodes. The current technologies have some disadvantages such as requiring a high-

resolution microscope, or need a complicated strain gauge force sensor. Our approach is to 

integrate a relatively simple design with fiber optics into an elaborately designed microfluidic 

channel. Physical contacts between a moving nematodes and the single-mode fiber (SMF) 

cantilever at the detection points bent the SMF cantilever, reducing light coupling from the 

SMF to the receiving multi-mode fiber. Thus, the SMF cantilever transduced the normal 
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force of the worm into optical transmission signals. The ability of the present device can 

benefit and advance the current whole animal assays. The technology will have the potential 

to provide a more direct measure of the effectiveness of drugs by qualifying the muscular 

force of parasitic nematode species. 

The second application we investigated is tracking the locomotion of microscopic 

nematodes. The mostly common observation technology is utilizing high resolution 

microscope with a decent algorithm to post process the images. Almost all existing on chip 

technologies essentially use optical effects such as shadow and interference patterns due to 

the presence of microorganism and thus require a sophisticated imaging sensor chip, along 

with a light source. We present a lens-less, image-sensor-less approach for real-time on-chip 

monitoring the locomotion of the nematodes. 24 × 24 detection units were formed by 

fabricating two identical arrays of micro electrodes orthogonally on two sides of a 

microfluidic chamber. We found that as a worm moved closer to the detection unit, the 

electrical resistance of this unit increased. Our approach overcomes the limited field of view 

of conventional optical microscopy, with relatively low cost, good spatial resolution and high 

portability. 

The third application is to fabricate a tunable meta-atom towards to EM metamaterial. 

The existing tuning technology usually relies on changing effective circuit parameters via 

incorporating variable capacitors and switches; varying constituent material property by 

using liquid crystal; or changing geometry using MEMS technology. However, almost all the 

technologies require complicated tuning mechanism and the fabricated metamaterial is not 

flexible enough and not able to withstand large deformation. Our approach is to incorporate a 

SRR shaped microfluidic channel made of super flexible elastomer and inject the channel 
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with liquid metal. The novel stretchable SRR-based meta-atom is capable of continuous 

tuning its EM response over more than 70% of the whole X-band frequency range via simple 

mechanical stretching. The metamaterials made of such meta-atom potential will find many 

applications in wearable EM coatings and devices. 

As an extension of the stretchable meta-atom, we developed a flexible and wearable 

microwave meta-skin. We demonstrated the strong ability of the meta-skin to tune the 

resonance of the frequency selective surface and to suppress the scattering from the curved 

surface of a dielectric material along different directions. It is believed that the present meta-

skin technology will find many applications in EM frequency tuning, shielding, and 

scattering suppression.  

In summary, as emerging technologies, optofluidics and electrofludics are still newly 

developing areas. Efforts are required to support a future technical revolution from 

researchers from different backgrounds, and in particular, from their parent fields: 

microfluidics, optics and electronics. 

6.2 Future Aspects 

The general outlook of the integration of microfluidics platform technology with 

optics and electronics including improving integration, reducing the cost, effective 

fabrication and increase applicability. I will detail the future aspects for different applications 

presented in this dissertation. 

For fiber-optic microfluidic device, we can further increase the integration and 

miniaturize the device by using on chip waveguide directly fabricated along with the 

microfluidic channel. The detection resolution and reliability can be further improved by 

increasing the amount of detection points. For micro-electro-fluidic grids device, with 
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MEMS-IC integration, we can replace the commercial FPGA board with a customized IC 

control chip and thus, improve the portability. We can further increase the resolution by 

reducing the width of microelectrodes. For tunable meta-atom, we can utilize some better 

fabrication techniques such as the 3D-printing or direct writing I reviewed in section 1.2.4. 

With those advanced fabrication technique, the liquid metal waste can be reduced and the 

processing time can be dramatically reduced especially for large-scale meta-skin device.  

And with the demonstration of the meta-atom and meta-skin, further miniaturization of the 

device can push the operating wavelength of the SRR-based filters from the microwave to the 

visible region. 
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APPENDIX  

SUPPORTING INFORMATION FOR 

TUNABLE META-ATOM USING LIQUID METAL  

EMBEDDED IN STRETCHABLE POLYMER 

 

The capacitance across the SRR gap region is given by  

𝐶𝑔𝑎𝑝 = 𝜀𝑜𝜀𝑟
𝑤ℎ

𝑔
                                                   (A.1) 

where g is the gap distance, and w and h are the width and thickness, respectively, of the 

split. The main geometric parameters of the SRR are denoted in Figure 4.1a.  

The self-inductance of a circular ring is given by  

𝐿0 = 4𝜋𝑎 [ln (
8𝑎

ℎ
) − 2]                                   (A.2) 

where a and h are the inner radius and cross-section thickness, respectively, of the SRR. 

After stretched, the circular SRR becomes an elliptical SRR. The self-inductance of 

the elliptical SRR is given by 

𝐿𝑒 = 8𝐸(𝛺)𝑟𝑎[ln (
16𝐸(𝛺)𝑟𝑎

𝜋ℎ
) − 2 − 0.4375𝛺2 − 0.14454𝛺4 − ⋯ ]      (A.3) 

where h is the thickness of the cross section of the split, and 𝐸(𝛺)𝑟𝑎 is the product of 

complete elliptical integral of the second kind and the semi-major axis. 𝐸(𝛺)𝑟𝑎 =

∫ √1 − (𝛺𝑠𝑖𝑛𝜃)2𝜋/2

0
𝑑𝜃, where 𝜃 is the eccentric angle of point on ellipse and 𝛺 = (𝑟𝑎

2 −

𝑟𝑏
2)/(𝑟𝑎

2 + 𝑟𝑏
2) where 𝑟𝑎 and 𝑟𝑏 are the semi-major and semi-minor axis of the elliptical 

SRR, respectively. 
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Figure S1, Figure S2 and Figure S3 show the measured transmittance and reflectance 

spectrum of proposed stretchable meta-atom for all three configurations (Figure 4.4, 4.5 and 

4.6) correspondingly.  

 
Figure S1. Measured transmittance and reflectance spectrum for a SRR meta-atom of third 

configuration at different stretching ratios of 0, 17%, 28%, 53%, and 72% 

 

Figure S2. Measured transmittance and reflectance spectrum for a SRR meta-atom of second 

configuration at different stretching ratios of 0, 17%, 28%, 53%, and 72% 
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Figure S3. Measured transmittance and reflectance spectrum for a SRR meta-atom of third 

configuration at different stretching ratios of 0, 17%, 28%, 53%, and 72% 
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